2,567 research outputs found
Aerocrane: A hybrid LTA aircraft for aerial crane applications
The Aerocrane, a hybrid aircraft, combines rotor lift with buoyant lift to offer VTOL load capability greatly in excess of helicopter technology while eliminating the airship problem of ballast transfer. In addition, the Aerocrane concept sharply reduces the mooring problem of airships and provides 360 deg vectorable thrust to supply a relatively large force component for control of gust loads. Designed for use in short range, ultra heavy lift missions, the Aerocrane operates in a performance envelope unsuitable for either helicopters or airships. Basic design considerations and potential problem areas of the concept are addressed
Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging
We introduce a new dynamic light scattering method, termed photon correlation
imaging, which enables us to resolve the dynamics of soft matter in space and
time. We demonstrate photon correlation imaging by investigating the slow
dynamics of a quasi two-dimensional coarsening foam made of highly packed,
deformable bubbles and a rigid gel network formed by dilute, attractive
colloidal particles. We find the dynamics of both systems to be determined by
intermittent rearrangement events. For the foam, the rearrangements extend over
a few bubbles, but a small dynamical correlation is observed up to macroscopic
length scales. For the gel, dynamical correlations extend up to the system
size. These results indicate that dynamical correlations can be extremely
long-ranged in jammed systems and point to the key role of mechanical
properties in determining their nature.Comment: Published version (Phys. Rev. Lett. 102, 085702 (2009)) The Dynamical
Activity Mapsprovided as Supplementary Online Material are also available on
http://w3.lcvn.univ-montp2.fr/~lucacip/dam/movies.ht
Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment
The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution
Sub-Antarctic and High Antarctic Notothenioid Fishes: Ecology and Adaptational Biology Revealed by the ICEFISH 2004 Cruise of RVIB Nathaniel B. Palmer
The goal of the ICEFISH 2004 cruise, which was conducted on board RVIB Nathaniel B. Palmer and traversed the transitional zones linking the South Atlantic to the Southern Ocean, was to compare the evolution, ecology, adaptational biology, community structure, and population dynamics of Antarctic notothenioid fishes relative to the cool/temperate notothenioids of the sub-Antarctic. To place this work in a comprehensive ecological context, cruise participants surveyed the benthos and geology of the biogeographic provinces and island shelves on either side of the Antarctic Polar Front (or Antarctic Convergence). Genome-enabled comparison of the responses of cold-living and temperate notothenioids to heat stress confirmed the sensitivity of the former to a warming Southern Ocean. Successful implementation of the international and interdisciplinary ICEFISH research cruise provides a model for future exploration of the sub-Antarctic sectors of the Indian and Pacific Oceans
The Meissner effect in a strongly underdoped cuprate above its critical temperature
The Meissner effect and the associated perfect "bulk" diamagnetism together
with zero resistance and gap opening are characteristic features of the
superconducting state. In the pseudogap state of cuprates unusual diamagnetic
signals as well as anomalous proximity effects have been detected but a
Meissner effect has never been observed. Here we have probed the local
diamagnetic response in the normal state of an underdoped La1.94Sr0.06CuO4
layer (up to 46 nm thick, critical temperature Tc' < 5 K) which was brought
into close contact with two nearly optimally doped La1.84Sr0.16CuO4 layers (Tc
\approx 32 K). We show that the entire 'barrier' layer of thickness much larger
than the typical c axis coherence lengths of cuprates exhibits a Meissner
effect at temperatures well above Tc' but below Tc. The temperature dependence
of the effective penetration depth and superfluid density in different layers
indicates that superfluidity with long-range phase coherence is induced in the
underdoped layer by the proximity to optimally doped layers; however, this
induced order is very sensitive to thermal excitation.Comment: 7 pages, 7 figures + Erratu
Direct observation of delithiation as the origin of analog memristance in LixNbO2
The discovery of analog LixNbO2 memristors revealed a promising new memristive mechanism wherein the diffusion of Li+ rather than O2- ions enables precise control of the resistive states. However, directly correlating lithium concentration with changes to the electronic structure in active layers remains a challenge and is required to truly understand the underlying physics. Chemically delithiated single crystals of LiNbO2 present a model system for correlating lithium variation with spectroscopic signatures from operando soft x-ray spectroscopy studies of device active layers. Using electronic structure modeling of the x-ray spectroscopy of LixNbO2 single crystals, we demonstrate that the intrinsic memristive behavior in LixNbO2 active layers results from field-induced degenerate p-type doping. We show that electrical operation of LixNbO2-based memristors is viable even at marginal Li deficiency and that the analog memristive switching occurs well before the system is fully metallic. This study serves as a benchmark for material synthesis and characterization of future LixNbO2-based memristor devices and suggests that valence change switching is a scalable alternative that circumvents the electroforming typically required for filamentary-based memristors
Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL
Abstract
OBJECTIVE:
The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma.
METHODS:
Twenty patients with presumptive or known CNS lesions underwent MRI study. Eighteen patients received both gadolinium-based contrast agents (GBCAs) and 1 of 2 USPIO contrast agents (ferumoxytol and ferumoxtran-10) 24 hours apart, which allowed direct comparative analysis. The remaining 2 patients had only USPIO-enhanced MRI because of a renal contraindication to GBCA. Conventional T1- and T2-weighted MRI were acquired before and after contrast administration in all patients, and perfusion MRI for relative cerebral blood volume (rCBV) assessment was obtained in all 9 patients receiving ferumoxytol.
RESULTS:
USPIO-enhanced MRI showed an equal number of enhancing brain lesions in 9 of 18 patients (50%), more enhancing lesions in 2 of 18 patients (11%), and fewer enhancing lesions in 3 of 18 patients (17%) compared with GBCA-enhanced MRI. Four of 18 patients (22%) showed no MRI enhancement. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI using ferumoxytol showed low rCBV (ratio <1.0) in 3 cases of demyelination or inflammation, modestly elevated rCBV in 5 cases of CNS lymphoma or lymphoproliferative disorder (range: 1.3-4.1), and no measurable disease in one case.
CONCLUSIONS:
This study showed that USPIO-enhanced brain MRI can be useful in the diagnosis of CNS inflammatory disorders and lymphoma, and is also useful for patients with renal compromise at risk of nephrogenic systemic fibrosis who are unable to receive GBCA
Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example
We extend our statistical mechanical theory of the glass transition from
examples consisting of point particles to molecular liquids with internal
degrees of freedom. As before, the fundamental assertion is that super-cooled
liquids are ergodic, although becoming very viscous at lower temperatures, and
are therefore describable in principle by statistical mechanics. The theory is
based on analyzing the local neighborhoods of each molecule, and a statistical
mechanical weight is assigned to every possible local organization. This
results in an approximate theory that is in very good agreement with
simulations regarding both thermodynamical and dynamical properties
Recommended from our members
Status of the LBNL normal-conducting CW VHF electron photo-gun
The fabrication and installation at the Lawrence Berkeley National Laboratory of a high-brightness high-repetition rate photo-gun, based on a normal conducting 187 MHz (VHF) RF cavity operating in CW mode, is in an advanced phase. The cavity will generate an electric field at the cathode plane of ∼ 20 MV/m to accelerate the electron bunches up to ∼ 750 keV, with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. The gun vacuum system has been designed for achieving pressures compatible with the use of "delicate" high quantum efficiency semiconductor cathodes to generate up to a nC bunches at MHz repetition rate with present laser technology. Several photo-cathode/laser systems are under consideration, and in particular photo-cathodes based on K CsSb are being developed for the gun and have already achieved a QE of 8% at 532 nm wavelength, or close to 20% including the Schottky barrier lowering. The cathode will be operated by a μJ fiber laser in conjunction with refractive transverse beam shaping to create a flat top transverse profile, as well as a birefringent pulse stacker to create a flat top temporal profile. The present status and the plan for future activities are presented.
- …
