72 research outputs found

    Improved non-invasive positron emission tomographic imaging of chemotherapy-induced tumor cell death using Zirconium-89-labeled APOMAB®

    Get PDF
    Purpose: The chimeric monoclonal antibody (mAb) chDAB4 (APOMAB®) targets the Lupus associated (La)/Sjögren Syndrome-B (SSB) antigen, which is over-expressed in tumors but only becomes available for antibody binding in dead tumor cells. Hence, chDAB4 may be used as a novel theranostic tool to distinguish between responders and nonresponders early after chemotherapy. Here, we aimed to ascertain which positron emitter, Zirconium-89 ([⁸⁹Zr]Zr(IV)) or Iodine-124 ([¹²⁴I]I), was best suited to label chDAB4 for post-chemotherapy PET imaging of tumor-bearing mice and to determine which of two different bifunctional chelators provided optimal tumor imaging by PET using [⁸⁹Zr]Zr(IV)-labeled chDAB4. Methods: C57BL/6 J mice bearing subcutaneous syngeneic tumors of EL4 lymphoma were either untreated or given chemotherapy, then administered radiolabeled chDAB4 after 24 h with its biodistribution examined using PET and organ assay. We compared chDAB4 radiolabeled with [⁸⁹Zr] Zr(IV) or [¹²⁴I] I, or [⁸⁹Zr]Zr-chDAB4 using either DFO-NCS or DFOSq as a chelator. Results: After chemotherapy, [⁸⁹Zr]Zr-chDAB4 showed higher and prolonged mean (± SD) tumor uptake of 29.5 ± 5.9 compared to 7.8 ± 1.2 for [¹²⁴I] I -chDAB4. In contrast, antibody uptake in healthy tissues was not affected. Compared to DFO-NCS, DFOSq did not result in significant differences in tumor uptake of [⁸⁹Zr]Zr-chDAB4 but did alter the tumor:liver ratio in treated mice 3 days after injection in favour of DFOSq (8.0 ± 1.1) compared to DFO-NCS (4.2 ± 0.7). Conclusion: ImmunoPET using chDAB4 radiolabeled with residualizing [⁸⁹Zr] Zr(IV) rather than [¹²⁴I] I optimized post-chemotherapy tumor uptake. Further, PET imaging characteristics were improved by DFOSq rather than DFO-NCS. Therefore, the radionuclide/chelator combination of [⁸⁹Zr] Zr(IV) and DFOSq is preferred for the imminent clinical evaluation of chDAB4 as a selective tumor cell death radioligand.Vasilios Liapis, William Tieu, Stacey E. Rudd, Paul S. Donnelly, Nicole L. Wittwer, Michael P. Brown, and Alexander H. Staudache

    Positron emission tomographic imaging of tumor cell death using zirconium-89-labeled APOMAB(R) following cisplatin chemotherapy in lung and ovarian cancer xenograft models

    Get PDF
    Published online 06 July 2021Purpose Early detection of tumor treatment responses represents an unmet clinical need with no approved noninvasive methods. DAB4, or its chimeric derivative, chDAB4 (APOMAB®) is an antibody that targets the Lupus associated antigen (La/SSB). La/SSB is over-expressed in malignancy and selectively targeted by chDAB4 in cancer cells dying from DNA-damaging treatment. Therefore, chDAB4 is a unique diagnostic tool that detects dead cancer cells and thus could distinguish between treatment responsive and nonresponsive patients. Procedures In clinically relevant tumor models, mice bearing subcutaneous xenografts of human ovarian or lung cancer cell lines or intraperitoneal ovarian cancer xenografts were untreated or given chemotherapy followed 24h later by chDAB4 radiolabeled with [⁸⁹Zr]ZrIV. Tumor responses were monitored using bioluminescence imaging and caliper measurements. [⁸⁹Zr]Zr-chDAB4 uptake in tumor and normal tissues was measured using an Albira SI Positron-Emission Tomography (PET) imager and its biodistribution was measured using a Hidex gamma-counter. Results Tumor uptake of [⁸⁹Zr]Zr-chDAB4 was detected in untreated mice, and uptake significantly increased in both human lung and ovarian tumors after chemotherapy, but not in normal tissues. Conclusion Given that tumors, rather than normal tissues, were targeted after chemotherapy, these results support the clinical development of chDAB4 as a radiodiagnostic imaging agent and as a potential predictive marker of treatment response.Vasilios Liapis, William Tieu, Nicole L. Wittwer, Tessa Gargett, Andreas Evdokiou, Prab Takhar, Stacey E. Rudd, Paul S. Donnelly, Michael P. Brown, Alexander H. Staudache

    Novel Anti-Neuroinflammatory Properties of a Thiosemicarbazone-Pyridylhydrazone Copper(II) Complex

    Get PDF
    Neuroinflammation has a major role in several brain disorders including Alzheimer’s disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecularweight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone–pyridylhydrazone copper(II) complex (CuL5 ), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer’s disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.Xin Yi Choo, Lachlan E. McInnes, Alexandra Grubman, Joanna M. Wasielewska, Irina Belaya, Emma Burrows, Hazel Quek, Jorge Cañas Martín, Sanna Loppi, Annika Sorvari, Dzhessi Rait, Andrew Powell, Clare Duncan, Jeffrey R. Liddell, Heikki Tanila, Jose M. Polo, Tarja Malm, Katja M. Kanninen, Paul S. Donnelly, and Anthony R. Whit

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Effect of environment on notch fatigue initiation resistance in CMSX4

    No full text
    Crack initiation at high temperatures has been studied in CMSX4 in both air and vacuum environments, to elucidate the effect of oxidation on the notch fatigue initiation process. In air, crack initiation occurred at sub-surface interdendritic pores in all cases. The sub-surface crack grows initially under vacuum conditions, before breaking out to the top surface. Lifetime is then critically dependent on initiating pore size and distance from the notch root surface. In vacuum conditions, crack initiation has been observed more consistently from surface or close-to-surface pores - indicating that surface oxidation is infilling/"healing" surface pores or providing significant local stress transfer to shift initiation to sub-surface pores
    corecore