13 research outputs found

    LTR-retrotransposons in R. exoculata and other crustaceans

    Get PDF
    Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species- or lineage-dependent. Our results also support the hypothesis of the Copia retrotransposon scarcity in metazoans compared to Gypsy elements. In such a context, the GalEa-like elements present an outstanding wide distribution among eukaryotes, from fishes to red algae, and can be even highly predominant within a large taxon, such as Malacostraca. Their distribution among crustaceans suggests a dynamics that follows a "domino days spreading" branching process in which successive amplifications may interact positively

    Bisphosphonates and glucocorticoid-induced osteoporosis: cons

    Get PDF
    Phylogenetic relationships among GalEa retrotransposons. Neighbor-Joining analysis of RT/RNaseH amino acid sequences of GalEa elements and representative Copia clades previously defined in the Gypsy Database. Statistical support comes from non-parametric bootstrapping using 100 replicates. (PDF 178 kb

    Study of a clade of retrotransposon Copia : The GalEa, in eukaryotic genomes

    No full text
    Les Ă©lĂ©ments transposables jouent un rĂŽle majeur dans l’évolution des gĂ©nomes eucaryotes. La connaissance de la distribution des Ă©lĂ©ments transposables entre diffĂ©rentes espĂšces au sein d’un mĂȘme taxon est une condition essentielle pour Ă©tudier leur dynamique et mieux comprendre leur rĂŽle dans l'Ă©volution des espĂšces. Compte tenu de leur abondance, de leur diversitĂ© spĂ©cifique et de milieu de vie, les crustacĂ©s sont un excellent modĂšle pour Ă©tudier la gĂ©nomique comparative des rĂ©trotransposons. C’est notamment chez les GalathĂ©es qu’a Ă©tĂ© dĂ©fini le clade GalEa des Ă©lĂ©ments de la superfamille des Copia. Nous avons Ă©tudiĂ© la distribution de deux superfamilles de rĂ©trotransposons Ă  LTR bien connus: les Gypsy et les Copia, au sein des crustacĂ©s. En combinant des PCRs avec amorces dĂ©gĂ©nĂ©rĂ©es et des analyses in silico, nous avons identifiĂ© 35 familles de rĂ©trotransposons Copia et 46 familles de rĂ©trotransposons Gypsy dans respectivement 15 et 18 espĂšces de crustacĂ©s (principalement des malacostracĂ©s : crabes, crevettes, krill...). Ces Ă©lĂ©ments prĂ©sentent une distribution et une diversitĂ© diffĂ©rentes au sein des crustacĂ©s. Les Ă©lĂ©ments Gypsy apparaissent relativement frĂ©quents et diversifiĂ©s dans toutes les espĂšces. A l’inverse, les Ă©lĂ©ments Copia semblent rares, donc difficilement dĂ©tectables, et sont largement dominĂ©s par les Ă©lĂ©ments du clade GalEa. Ces rĂ©sultats suggĂšrent deux stratĂ©gies diffĂ©rentes de dynamique pour les rĂ©trotransposons Gypsy (thĂ©orie de la Reine Rouge) et les rĂ©trotransposons GalEa (‘domino days spreading’ branching process). De plus, les Ă©lĂ©ments GalEa prĂ©sentent un grand succĂšs Ă©volutif en Ă©tant largement distribuĂ©s dans de nombreuses branches de mĂ©tazoaires. Ils sont aussi prĂ©sents chez quelques algues rouges et nous en avons Ă©galement dĂ©tectĂ© chez des Fungi. Profitant des nombreuses donnĂ©es gĂ©nomiques disponibles, nous avons donc Ă©tudiĂ© la distribution des Ă©lĂ©ments GalEa de Fungi, dans le but de comparer celle-ci aux rĂ©sultats obtenus chez les crustacĂ©s. En fait, ils n’apparaissent qu’au sein d’un grand embranchement d’ascomycĂštes, les Pezizomycotina, et ils forment un groupe monophylĂ©tique au sein des GalEa. Enfin, chez les Fungi, les Ă©lĂ©ments GalEa ne sont pas majoritaire parmi les rĂ©trotransposons Copia. Nous avons donc initiĂ© une nouvelle Ă©tude chez les mollusques, afin de dĂ©finir si les rĂ©sultats obtenus chez les crustacĂ©s sont une caractĂ©ristique des Ă©lĂ©ments GalEa, des malacostracĂ©s ou des mĂ©tazoaires.Transposable elements play a major role in the evolution of eukaryotic genomes. Knowing the distribution of transposable elements between different species within the same taxon is essential to study their dynamics and to better understand their role in the evolution of species. Given their abundance, species diversity and living environment, crustaceans are an excellent model for studying comparative genomics of retrotransposons. It is notably in the squat lobsters that the GalEa clade of Superfamily Copia was defined. We studied the distribution of two well-known LTR retrotransposons superfamilies: Gypsy and Copia, in crustaceans. By combining PCRs with degenerate primers and in silico analysis, we identified 35 families of Copia retrotransposons and 46 families of Gypsy retrotransposons in 15 and 18 species of crustaceans (mainly Malacostraca: crabs, shrimp, krill ...). These elements have different distribution and diversity in crustaceans. Gypsy elements appear relatively commonly and diverse in all species. Conversely, the Copia elements seem rare, and consequently more difficult to detect, and are largely dominated by the elements of the clade GalEa. These results suggest two different dynamic strategies for retrotransposons Gypsy (the Red Queen theory) and retrotransposons GalEa (‘domino days spreading’ branching process). In addition, GalEa elements present a great evolutionary success being widely distributed in many branches of metazoans. They are also present in certain red algae and we have also detected them in Fungi. Taking advantage of the large amount of available genomic data, we have studied the distribution of GalEa elements of Fungi, in order to compare it with the results obtained in crustaceans. In fact, they appear only in a large phylum of Ascomycetes, in Pezizomycotina, and they form a monophyletic group within the GalEa. Finally, in the Fungi, the GalEa elements are not majority among Copia retrotransposons. We have therefore initiated a new study in molluscs, to define if the results obtained in crustaceans are a feature of GalEa elements, Malacostraca or metazoans

    Etude d'un clade de rétrotransposons Copia : les GalEa, au sein des génomes eucaryotes

    Get PDF
    Transposable elements play a major role in the evolution of eukaryotic genomes. Knowing the distribution of transposable elements between different species within the same taxon is essential to study their dynamics and to better understand their role in the evolution of species. Given their abundance, species diversity and living environment, crustaceans are an excellent model for studying comparative genomics of retrotransposons. It is notably in the squat lobsters that the GalEa clade of Superfamily Copia was defined. We studied the distribution of two well-known LTR retrotransposons superfamilies: Gypsy and Copia, in crustaceans. By combining PCRs with degenerate primers and in silico analysis, we identified 35 families of Copia retrotransposons and 46 families of Gypsy retrotransposons in 15 and 18 species of crustaceans (mainly Malacostraca: crabs, shrimp, krill ...). These elements have different distribution and diversity in crustaceans. Gypsy elements appear relatively commonly and diverse in all species. Conversely, the Copia elements seem rare, and consequently more difficult to detect, and are largely dominated by the elements of the clade GalEa. These results suggest two different dynamic strategies for retrotransposons Gypsy (the Red Queen theory) and retrotransposons GalEa (‘domino days spreading’ branching process). In addition, GalEa elements present a great evolutionary success being widely distributed in many branches of metazoans. They are also present in certain red algae and we have also detected them in Fungi. Taking advantage of the large amount of available genomic data, we have studied the distribution of GalEa elements of Fungi, in order to compare it with the results obtained in crustaceans. In fact, they appear only in a large phylum of Ascomycetes, in Pezizomycotina, and they form a monophyletic group within the GalEa. Finally, in the Fungi, the GalEa elements are not majority among Copia retrotransposons. We have therefore initiated a new study in molluscs, to define if the results obtained in crustaceans are a feature of GalEa elements, Malacostraca or metazoans.Les Ă©lĂ©ments transposables jouent un rĂŽle majeur dans l’évolution des gĂ©nomes eucaryotes. La connaissance de la distribution des Ă©lĂ©ments transposables entre diffĂ©rentes espĂšces au sein d’un mĂȘme taxon est une condition essentielle pour Ă©tudier leur dynamique et mieux comprendre leur rĂŽle dans l'Ă©volution des espĂšces. Compte tenu de leur abondance, de leur diversitĂ© spĂ©cifique et de milieu de vie, les crustacĂ©s sont un excellent modĂšle pour Ă©tudier la gĂ©nomique comparative des rĂ©trotransposons. C’est notamment chez les GalathĂ©es qu’a Ă©tĂ© dĂ©fini le clade GalEa des Ă©lĂ©ments de la superfamille des Copia. Nous avons Ă©tudiĂ© la distribution de deux superfamilles de rĂ©trotransposons Ă  LTR bien connus: les Gypsy et les Copia, au sein des crustacĂ©s. En combinant des PCRs avec amorces dĂ©gĂ©nĂ©rĂ©es et des analyses in silico, nous avons identifiĂ© 35 familles de rĂ©trotransposons Copia et 46 familles de rĂ©trotransposons Gypsy dans respectivement 15 et 18 espĂšces de crustacĂ©s (principalement des malacostracĂ©s : crabes, crevettes, krill...). Ces Ă©lĂ©ments prĂ©sentent une distribution et une diversitĂ© diffĂ©rentes au sein des crustacĂ©s. Les Ă©lĂ©ments Gypsy apparaissent relativement frĂ©quents et diversifiĂ©s dans toutes les espĂšces. A l’inverse, les Ă©lĂ©ments Copia semblent rares, donc difficilement dĂ©tectables, et sont largement dominĂ©s par les Ă©lĂ©ments du clade GalEa. Ces rĂ©sultats suggĂšrent deux stratĂ©gies diffĂ©rentes de dynamique pour les rĂ©trotransposons Gypsy (thĂ©orie de la Reine Rouge) et les rĂ©trotransposons GalEa (‘domino days spreading’ branching process). De plus, les Ă©lĂ©ments GalEa prĂ©sentent un grand succĂšs Ă©volutif en Ă©tant largement distribuĂ©s dans de nombreuses branches de mĂ©tazoaires. Ils sont aussi prĂ©sents chez quelques algues rouges et nous en avons Ă©galement dĂ©tectĂ© chez des Fungi. Profitant des nombreuses donnĂ©es gĂ©nomiques disponibles, nous avons donc Ă©tudiĂ© la distribution des Ă©lĂ©ments GalEa de Fungi, dans le but de comparer celle-ci aux rĂ©sultats obtenus chez les crustacĂ©s. En fait, ils n’apparaissent qu’au sein d’un grand embranchement d’ascomycĂštes, les Pezizomycotina, et ils forment un groupe monophylĂ©tique au sein des GalEa. Enfin, chez les Fungi, les Ă©lĂ©ments GalEa ne sont pas majoritaire parmi les rĂ©trotransposons Copia. Nous avons donc initiĂ© une nouvelle Ă©tude chez les mollusques, afin de dĂ©finir si les rĂ©sultats obtenus chez les crustacĂ©s sont une caractĂ©ristique des Ă©lĂ©ments GalEa, des malacostracĂ©s ou des mĂ©tazoaires

    LTR-Retrotransposons in R. exoculata and Other Crustaceans: The Outstanding Success of GalEa-Like Copia Elements

    Get PDF
    Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species-or lineage-dependent. Our results also support the hypothesis of the Copia retrotransposon scarcity in metazoans compared to Gypsy elements. In such a context, the GalEa-like elements present an outstanding wide distribution among eukaryotes, from fishes to red algae, and can be even highly predominant within a large taxon, such as Malacostraca. Their distribution among crustaceans suggests a dynamics that follows a "domino days spreading'' branching process in which successive amplifications may interact positively

    Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics

    No full text
    Abstract Background The three superfamilies of Long Terminal Repeat (LTR) retrotransposons are a widespread kind of transposable element and a major factor in eukaryotic genome evolution. In metazoans, recent studies suggested that Copia LTR-retrotransposons display specific dynamic compared to the more abundant and diverse Gypsy elements. Indeed, Copia elements show a relative scarcity and the prevalence of only a few clades in specific hosts. Thus, BEL/Pao seems to be the second most abundant superfamily. However, the generality of these assumptions remains to be assessed. Therefore, we carried out the first large-scale comparative genomic analysis of LTR-retrotransposons in molluscs. The aim of this study was to analyse the diversity, copy numbers, genomic proportions and distribution of LTR-retrotransposons in a large host phylum. Results We compare nine genomes of molluscs and further added LTR-retrotransposons sequences detected in databases for 47 additional species. We identified 1709 families, which enabled us to define 31 clades. We show that clade richness was highly dependent on the considered superfamily. We found only three Copia clades, including GalEa and Hydra which appear to be widely distributed and highly dominant as they account for 96% of the characterised Copia elements. Among the seven BEL/Pao clades identified, Sparrow and Surcouf are characterised for the first time. We find no BEL or Pao elements, but the rare clades Dan and Flow are present in molluscs. Finally, we characterised 21 Gypsy clades, only five of which had been previously described, the C-clade being the most abundant one. Even if they are found in the same number of host species, Copia elements are clearly less abundant than BEL/Pao elements in copy number or genomic proportions, while Gypsy elements are always the most abundant ones whatever the parameter considered. Conclusions Our analysis confirms the contrasting dynamics of Copia and Gypsy elements in metazoans and indicates that BEL/Pao represents the second most abundant superfamily, probably reflecting an intermediate dynamic. Altogether, the data obtained in several taxa highly suggest that these patterns can be generalised for most metazoans. Finally, we highlight the importance of using database information in complement of genome analyses when analyzing transposable element diversity

    Additional file 5: of Filamentous ascomycete genomes provide insights into Copia retrotransposon diversity in fungi

    No full text
    Comparison between structural features of 7 fungal and 6 metazoan GalEa retrotransposons. Features from metazoan elements were described in Terrat et al. (2008) and Piednoël et al. (2013). (XLSX 28 kb

    Additional file 2: of Filamentous ascomycete genomes provide insights into Copia retrotransposon diversity in fungi

    No full text
    Phylogenetic relationships among fungal Copia families. Neighbor-Joining analysis of RT amino acid sequences of representative Copia families isolated with LTRharvest and all fungal Copia sequences available in RepBase. The 27 FunCo (Fungal Copia) clades are represented by their number in bold color. Statistical support (>70%) comes from non-parametric bootstrapping using 100 replicates. (PPTX 573 kb

    Phylogenetic relationships among Gypsy retrotransposons inferred from Neighbor-Joining analysis of RT/RH amino acid sequences.

    No full text
    <p>The crustacean elements are indicated in bold and the four <i>R. exoculata</i> elements (GyRex) are highlighted in grey. Statistical support (>50%) comes from non parametric bootstrapping using 100 replicates. DIRS1-like sequences were used as outgroup.</p

    Number of Copia and Gypsy elements studied in crustaceans.

    No full text
    <p>Genetic relationships between crustacean classes and orders are represented by a tree topology reconstructed from previous studies (Regier <i>et al.</i> 2010, Giribet and Edgecombe, 2011; Ahyong and O’Meally, 2004). <b>M</b>: Malacostraca, <b>D</b>: Decapoda. For Copia retrotransposons, GalEa and non-GalEa elements are distinguished. Only a few representatives of the Copia elements described <i>in D. pulex</i> were studied. nt: not tested; -: no element detected; <sup>a</sup> species screened using degenerate PCRs.</p
    corecore