13 research outputs found
EndoNet: an information resource about regulatory networks of cell-to-cell communicationâ
EndoNet is an information resource about intercellular regulatory communication. It provides information about hormones, hormone receptors, the sources (i.e. cells, tissues and organs) where the hormones are synthesized and secreted, and where the respective receptors are expressed. The database focuses on the regulatory relations between them. An elementary communication is displayed as a causal link from a cell that secretes a particular hormone to those cells which express the corresponding hormone receptor and respond to the hormone. Whenever expression, synthesis and/or secretion of another hormone are part of this response, it renders the corresponding cell an internal node of the resulting network. This intercellular communication network coordinates the function of different organs. Therefore, the database covers the hierarchy of cellular organization of tissues and organs as it has been modeled in the Cytomer ontology, which has now been directly embedded into EndoNet. The user can query the database; the results can be used to visualize the intercellular information flow. A newly implemented hormone classification enables to browse the database and may be used as alternative entry point. EndoNet is accessible at: http://endonet.bioinf.med.uni-goettingen.de
Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition StratĂ©gies de gestion de lâĂ©nergie pour un moteur hybride pneumatique basĂ©es sur la reconnaissance du cycle de conduite
This paper presents energy management strategies for a new hybrid pneumatic engine concept which is specific by its configuration in that it is not the vehicle but only the engine itself which is hybridized. Different energy management strategies are proposed in this paper. The first is called Causal Strategy (CS) and implements a rule-based control technique. The second strategy, called Constant Penalty Coefficient (CPC), is based on the minimization of equivalent consumption, where the use of each energy source is formulated in a comparative unit. The balance between the consumption of different energy sources (chemical or pneumatic) is achieved by the introduction of an equivalence factor. The third strategy is called Variable Penalty Coefficient (VPC). In fact, it is beneficial to consider the equivalence coefficient as variable within the amount of pneumatic energy stored in the air-tank i.e. state of charge, because the choice of propulsion mode should be different if the tank is full or empty. In this case, the penalty coefficient appears as a non linear function of the air-tank state of charge. Another way to adapt the penalty coefficient is to recognize a reference pattern during the driving cycle. The coefficient value can then be changed according to an optimized value found for each of the reference cycles. This strategy is called Driving Pattern Recognition (DPR). It involves a technique of sliding window pattern recognition. The concept is to convert the whole driving cycle into smaller pieces to which the equivalence factor can be appropriately adapted. This strategy is based on the assumption that the current driving situation does not change rapidly and thus the pattern is likely to continue into the near future. The identification window size is a parameter which has to be adjusted to attain the maximum of identification success over the reference cycle. We propose to define reference patterns as statistical models. The pattern recognition method is based on a correlation function. To improve analysis, all the results obtained with different energy management strategies are compared with a Dynamic Programming approach (DP) considered as the optimal solution. Results show that about 40% of fuel saving can be achieved by DP. The VPC and DPR strategies give better results than the CPC strategy, not so far from the results obtained with DP. <br> Cet article prĂ©sente comparativement des stratĂ©gies de gestion de lâĂ©nergie pour un nouveau concept de moteur hybride : lâhybride pneumatique. Dans cette configuration spĂ©cifique, câest le moteur lui-mĂȘme qui est hybridĂ© (et non le vĂ©hicule). Plusieurs stratĂ©gies de gestion dâĂ©nergie sont proposĂ©es dans cet article. La premiĂšre est dite Causale (CS) car basĂ©e sur des principes heuristiques de dĂ©cision. La deuxiĂšme est basĂ©e sur la minimisation dâun critĂšre dâĂ©quivalence et est appelĂ©e stratĂ©gie Ă Coefficient de PĂ©nalitĂ© Constant (CPC). Dans ce cas, les flux dâĂ©nergie (depuis chaque source chimique ou pneumatique) sont dĂ©crits dans des unitĂ©s identiques. Ainsi, pour un mĂȘme travail Ă produire, il est possible de faire une « balance » entre la consommation nĂ©cessaire selon chacune des deux sources dâĂ©nergie, et ceci avec un coefficient de pondĂ©ration constant. La troisiĂšme stratĂ©gie utilise un coefficient de pondĂ©ration variable selon la quantitĂ© dâair disponible dans le rĂ©servoir (i.e. Ă©tat de charge) et est appelĂ©e stratĂ©gie Ă Coefficient de PĂ©nalitĂ© Variable (VPC). Dans ce cas, le coefficient de pĂ©nalitĂ© est une fonction non-linĂ©aire de la pression dans le rĂ©servoir. Un autre raisonnement consiste Ă considĂ©rer quâil est nĂ©cessaire dâadapter Ă©galement le coefficient Ă la situation de conduite (embouteillage, urbain, routier, autoroutier...), pour cela il est impĂ©ratif de reconnaĂźtre la situation de conduite. Le coefficient peut alors ĂȘtre adaptĂ©, selon la situation reconnue Ă la valeur optimale prĂ©dĂ©terminĂ©e pour des situations types. Cette stratĂ©gie, Ă reconnaissance de situation de conduite (DPR), se base sur une fenĂȘtre glissante oĂč la situation de conduite est considĂ©rĂ©e Ă changements lents (conservatisme). Une partie du travail a Ă©tĂ© dâoptimiser la taille de la fenĂȘtre dâidentification.Les situations de conduite types sont dĂ©crites par des modĂšles statistiques (densitĂ© de prĂ©sence). La reconnaissance du cycle est basĂ©e sur une fonction de corrĂ©lation. Afin de comparer les rĂ©sultats obtenus sur diffĂ©rents cycles de conduite (homologuĂ©s et Artemis) avec les diffĂ©rentes stratĂ©gies proposĂ©es, les consommations minimales atteignables obtenues par Programmation Dynamique (DP) sont Ă©galement donnĂ©es. Les rĂ©sultats montrent que 40% de gain de consommation peuvent ĂȘtre atteints sur certains cycles. Les rĂ©sultats obtenus avec les stratĂ©gies « adaptatives » (VPC et DPR) sont meilleurs que ceux obtenus avec les stratĂ©gies « constantes » (CS et CPC). De plus, les rĂ©sultats obtenus sont proches des rĂ©sultats optimaux obtenus avec la programmation dynamique