53 research outputs found
The conserved transcription factors, MYB115 and MYB118, control expression of the newly evolved benzoyloxy glucosinolate pathway in <i>Arabidopsis thaliana</i>
The evolution of plant metabolic diversity is largely driven by gene duplication and ensuing sub-functionalization and/or neo-functionalization to generate new enzymatic activities. However, it is not clear whether the transcription factors (TFs) regulating these new enzyme encoding genes were required to co-evolve with these genes in a similar fashion or if these new genes can be captured by existing conserved TFs to provide the appropriate expression pattern. In this study, we found two conserved TFs, MYB115, and MYB118, co-expressed with the key enzyme encoding genes in the newly evolved benzoyloxy glucosinolate (GLS) pathway. These TFs interacted with the promoters of the GLS biosynthetic genes and negatively influenced their expression. Similarly, the GLS profiles of these two TFs knockouts showed that they influenced the aliphatic GLS accumulation within seed, leaf and flower, while they mainly expressed in seeds. Further studies indicated that they are functionally redundant and epistatically interact to control the transcription of GLS genes. Complementation study confirmed their roles in regulating the aliphatic GLS biosynthesis. These results suggest that the newly evolved enzyme encoding genes for novel metabolites can be regulated by conserved TFs, which helps to improve our model for newly evolved genes regulation
An integrative genetic study of rice metabolism, growth and stochastic variation reveals potential C/N partitioning loci
Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation
Development of a High-Density Genetic Map Based on Specific Length Amplified Fragment Sequencing and Its Application in Quantitative Trait Loci Analysis for Yield-Related Traits in Cultivated Peanut
High-density genetic maps (HDGMs) are very useful for genomic studies and quantitative trait loci (QTL) mapping. However, the low frequency of DNA polymorphisms in peanut has limited the quantity of available markers and hindered the construction of a HDGM. This study generated a peanut genetic map with the highest number of high-quality SNPs based on specific locus amplified fragment sequencing (SLAF-seq) technology and a newly constructed RIL population (“ZH16” × “sd-H1”). The constructed HDGM included 3,630 SNP markers belonging to 2,636 bins on 20 linkage groups (LGs), and it covers 2,098.14 cM in length, with an average marker distance of 0.58 cM. This HDGM was applied for the following collinear comparison, scaffold anchoring and analysis of genomic characterization including recombination rates and segregation distortion in peanut. For QTL mapping of investigated 14 yield-related traits, a total of 62 QTLs were detected on 12 chromosomes across 3 environments, and the co-localization of QTLs was observed for these traits which were significantly correlated on phenotype. Two stable co-located QTLs for seed- and pod-related traits were significantly identified in the chromosomal end of B06 and B07, respectively. The construction of HDGM and QTL analysis for yield-related traits in this study provide useful information for fine mapping and functional analysis of genes as well as molecular marker-assisted breeding
Genetic mapping of AhVt1, a novel genetic locus that confers the variegated testa color in cultivated peanut (Arachis hypogaea L.) and its utilization for marker-assisted selection
IntroductionPeanut (Arachis hypogaea L.) is an important cash crop worldwide. Compared with the ordinary peanut with pure pink testa, peanut with variegated testa color has attractive appearance and a higher market value. In addition, the variegated testa represents a distinct regulation pattern of anthocyanin accumulation in integument cells.MethodsIn order to identify the genetic locus underlying variegated testa color in peanut, two populations were constructed from the crosses between Fuhua 8 (pure-pink testa) and Wucai (red on white variegated testa), Quanhonghua 1 (pure-red testa) and Wucai, respectively. Genetic analysis and bulked sergeant analysis sequencing were applied to detect and identify the genetic locus for variegated testa color. Marker-assisted selection was used to develop new variegated testa peanut lines.ResultsAs a result, all the seeds harvested from the F1 individuals of both populations showed the variegated testa type with white trace. Genetic analysis revealed that the pigmentation of colored region in red on white variegated testa was controlled by a previous reported gene AhRt1, while the formation of white region (un-pigmented region) in variegated testa was controlled by another single genetic locus. This locus, named as AhVt1 (Arachis hypogaea Variegated Testa 1), was preliminary mapped on chromosome 08 through bulked sergeant analysis sequencing. Using a secondary mapping population derived from the cross between Fuhua 8 and Wucai, AhVt1 was further mapped to a 1.89-Mb genomic interval by linkage analysis, and several potential genes associated with the uneven distribution of anthocyanin, such as MADS-box, MYB, and Chalcone synthase-like protein, were harbored in the region. Moreover, the molecular markers closely linked to the AhVt1 were developed, and the new variegated testa peanut lines were obtained with the help of marker-assisted selection.ConclusionOur findings will accelerate the breeding program for developing new peanut varieties with “colorful” testa colors and laid a foundation for map-based cloning of gene responsible for variegated testa
Gene expression and DNA methylation altering lead to the high oil content in wild allotetraploid peanut (A. monticola)
IntroductionThe wild allotetraploid peanut Arachis monticola contains a higher oil content than the cultivated allotetraploid Arachis hypogaea. Besides the fact that increasing oil content is the most important peanut breeding objective, a proper understanding of its molecular mechanism controlling oil accumulation is still lacking.MethodsWe investigated this aspect by performing comparative transcriptomics from developing seeds between three wild and five cultivated peanut varieties.ResultsThe analyses not only showed species-specific grouping transcriptional profiles but also detected two gene clusters with divergent expression patterns between two species enriched in lipid metabolism. Further analysis revealed that expression alteration of lipid metabolic genes with co-expressed transcription factors in wild peanut led to enhanced activity of oil biogenesis and retarded the rate of lipid degradation. In addition, bisulfite sequencing was conducted to characterize the variation of DNA methylation between wild allotetraploid (245, WH 10025) and cultivated allotetraploid (Z16, Zhh 7720) genotypes. CG and CHG context methylation was found to antagonistically correlate with gene expression during seed development. Differentially methylated region analysis and transgenic assay further illustrated that variations of DNA methylation between wild and cultivated peanuts could affect the oil content via altering the expression of peroxisomal acyl transporter protein (Araip.H6S1B).DiscussionFrom the results, we deduced that DNA methylation may negatively regulate lipid metabolic genes and transcription factors to subtly affect oil accumulation divergence between wild and cultivated peanuts. Our work provided the first glimpse on the regulatory mechanism of gene expression altering for oil accumulation in wild peanut and gene resources for future breeding applications
Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut
Peanut testa (seed coat) contains large amounts of flavonoids that significantly influence seed color, taste, and nutritional qualities. There are various colors of peanut testa, however, their precise flavonoid components and regulatory mechanism of pigmentation remain unclear. In this study, a total of 133 flavonoids were identified and absolutely quantified in the seed coat of four peanut cultivars with different testa color using a widely targeted metabolomic approach. Black peanut skin had more types and substantial higher levels of cyanidin-based anthocyanins, which possibly contribute to its testa coloration. Procyanidins and flavan-3-ols were the major co-pigmented flavonoids in the red, spot and black peanuts, while flavanols were the most abundant constitutes in white cultivar. Although the concentrations as well as composition characteristics varied, the content ratios of procyanidins to flavan-3-ols were similar in all samples except for white peanut. Furthermore, MYB-like transcription factors, anthocyanidin reductases (ANR), and UDP-glycosyltransferases (UGT) were found to be candidate genes involved in testa pigmentation via RNA-seq and weighted gene co-expression network analysis. It is proposed that UGTs and ANR compete for the substrate cyanidin and the prevalence of UGTs activities over ANR one will determine the color pattern of peanut testa. Our results provide a comprehensive report examining the absolute abundance of flavonoid profiles in peanut seed coat, and the finding are expected to be useful for further understanding of regulation mechanisms of seed coat pigmentation in peanut and other crops
Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in \u3ci\u3eCamelina sativa\u3c/i\u3e
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the ratelimiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12%in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD coexpressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production
Recommended from our members
An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci.
Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation
An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci.
Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation
- …