557 research outputs found

    Addressing indoor air pollution challenges through concrete public policies in South Korea

    Get PDF
    In this interview, Dr. Kang illustrates some of the ways in which a country can address indoor air quality issues through legislation. Taking South Korea as a case study, the article explores the measures available to governments to ensure efficient control of indoor air quality, and to elaborate a plan for improvement going forward. Through a discussion on public-private interactions, the author shows that indoor air quality is a complex issue that requires an alignment of all policies, market forces and citizens in order to be managed appropriately. By and large, it is the dialogue and transparency between these different actors that ensures that good practices are promoted, and appropriate measures taken. While South Korea seems particularly advanced in orchestrating a response to air quality issues on a national scale, it is hoped that other countries will be inspired by the results achieved and follow suit by drafting innovative legislation on the topic

    The predicted crystal structure of Li_4C_6O_6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods

    Get PDF
    In this communication, we use first-principles based multi-level computational methods to predict the crystal structure of Li_4C_6O_6, the key intermediate material that can be oxidized to Li_2C_6O_6 or reduced to Li_6C_6O_6. This predicted structure leads to an X-ray diffraction (XRD) pattern in good agreement with experiment, validating the predicted structure. With this structure in hand one can proceed to determine details for the electrochemical properties of these organic electrodes (chemical potential for Li ion as a function of loading and the mechanism for the lithiation/delithiation process) useful in designing optimum systems

    Fast Knowledge Graph Completion using Graphics Processing Units

    Full text link
    Knowledge graphs can be used in many areas related to data semantics such as question-answering systems, knowledge based systems. However, the currently constructed knowledge graphs need to be complemented for better knowledge in terms of relations. It is called knowledge graph completion. To add new relations to the existing knowledge graph by using knowledge graph embedding models, we have to evaluate N×N×RN\times N \times R vector operations, where NN is the number of entities and RR is the number of relation types. It is very costly. In this paper, we provide an efficient knowledge graph completion framework on GPUs to get new relations using knowledge graph embedding vectors. In the proposed framework, we first define "transformable to a metric space" and then provide a method to transform the knowledge graph completion problem into the similarity join problem for a model which is "transformable to a metric space". After that, to efficiently process the similarity join problem, we derive formulas using the properties of a metric space. Based on the formulas, we develop a fast knowledge graph completion algorithm. Finally, we experimentally show that our framework can efficiently process the knowledge graph completion problem

    In-situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser

    Full text link
    The remarkably high superconducting transition temperature and upper critical field of iron(Fe)-based layered superconductors, despite ferromagnetic material base, open the prospect for superconducting electronics. However, success in superconducting electronics has been limited because of difficulties in fabricating high-quality thin films. We report the growth of high-quality c-axis-oriented cobalt(Co)-doped SrFe2As2 thin films with bulk superconductivity by using an in-situ pulsed laser deposition technique with a 248-nm-wavelength KrF excimer laser and an arsenic(As)-rich phase target. The temperature and field dependences of the magnetization showing strong diamagnetism and transport critical current density with superior Jc-H performance are reported. These results provide necessary information for practical applications of Fe-based superconductors.Comment: 8 pages, 3figures. to be published at Appl. Phys. Let

    Epitheliotropic cutaneous lymphoma (mycosis fungoides) in a dog

    Get PDF
    A seven-year-old castrated male Yorkshire terrier dog was presented for a recurrent skin disease. Erythematous skin during the first visit progressed from multiple plaques to patch lesions and exudative erosion in the oral mucosa membrane. Biopsy samples were taken from erythematous skin and were diagnosed with epitheliotropic T cell cutaneous lymphoma by histopathology and immunochemical stain. In serum chemistry, the dog had a hypercalcemia (15.7 mg/dl) and mild increased alkaline phosphatase (417 U/l). Immunohistochemistry was performed to detect parathyroid hormone-related peptide (PTH-rP) in epitheliotropic cutaneous lymphoma tissues but the neoplastic cells were not labeled with anti-PTH-rP antibodies. The patient was treated with prednisolone and isotretinoin. However, the dog died unexpectedly

    Protective Immunity Induced by Incorporating Multiple Antigenic Proteins of Toxoplasma gondii Into Influenza Virus-Like Particles

    Get PDF
    Virus-like particle (VLP) as a highly efficient vaccine platform has been used to present single or multiple antigenic proteins. In this study, we generated VLPs (multi-antigen VLPs, TG146) in insect cells co-infected with recombinant baculoviruses presenting IMC, ROP18, and MIC8 of Toxoplasma gondii together with influenza matrix protein 1 (M1) as a core protein. We also generated three VLPs expressing IMC, ROP18, or MIC8 together with M1 for combination VLPs (TG1/TG4/TG6). A total of four kinds of VLPs generated were characterized by TEM. Higher number of VLPs particles per μm2 were observed in multi-antigen VLPs compared to combination VLPs. Mice (BALB/c) were intranasually immunized with multi-antigen VLPs or combination VLPs and challenged with T. gondii tachyzoites (GT1) intraperitoneally. Compared to combination VLPs, multi-antigen VLPs showed significantly higher levels of CD4+ T cell, and germinal center B cell responses with reduced apoptosis responses, resulting in significant reduction on parasite burden. These results indicate that higher efficacy of VLPs generated by multi-antigen VLPs can induce significant reduction of parasite burden and better survival of mice than that by combination VLPs, providing important insights into vaccine design strategy for VLPs vaccine expressing multiple antigenic proteins

    The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li_2C_6O_6, Using Combined Experimental and First Principle Studies

    Get PDF
    Herein, we explore the capacity degradation of dilithium rhodizonate salt (Li_2C_6O_6) in lithium rechargeable batteries based on detailed investigations of the lithium de/insertion mechanism in Li_2C_6O_6 using both electrochemical and structural ex situ analyses combined with first-principles calculations. The experimental observations indicate that the Li_xC_6O_6 electrode undergoes multiple two-phase reactions in the composition range of 2 ≤ x ≤ 6; however, the transformations in the range 2 ≤ x ≤ 4 involve a major morphological change that eventually leads to particle exfoliation and the isolation of active material. Through first-principles analysis of Li_xC_6O_6 during de/lithiation, it was revealed that particle exfoliation is closely related to the crystal structural changes with lithium deinsertion from C_6O_6 interlayers of the Li_xC_6O_6. Among the lithium ions found at various sites, the extraction of lithium from C_6O_6 interlayers at 2 ≤ x ≤ 4 decreases the binding force between the C_6O_6 layers, promoting the exfoliation of C_6O_6 layers and pulverization at the electrode, which degrades capacity retention
    corecore