36 research outputs found

    More complex encoder is not all you need

    Full text link
    U-Net and its variants have been widely used in medical image segmentation. However, most current U-Net variants confine their improvement strategies to building more complex encoder, while leaving the decoder unchanged or adopting a simple symmetric structure. These approaches overlook the true functionality of the decoder: receiving low-resolution feature maps from the encoder and restoring feature map resolution and lost information through upsampling. As a result, the decoder, especially its upsampling component, plays a crucial role in enhancing segmentation outcomes. However, in 3D medical image segmentation, the commonly used transposed convolution can result in visual artifacts. This issue stems from the absence of direct relationship between adjacent pixels in the output feature map. Furthermore, plain encoder has already possessed sufficient feature extraction capability because downsampling operation leads to the gradual expansion of the receptive field, but the loss of information during downsampling process is unignorable. To address the gap in relevant research, we extend our focus beyond the encoder and introduce neU-Net (i.e., not complex encoder U-Net), which incorporates a novel Sub-pixel Convolution for upsampling to construct a powerful decoder. Additionally, we introduce multi-scale wavelet inputs module on the encoder side to provide additional information. Our model design achieves excellent results, surpassing other state-of-the-art methods on both the Synapse and ACDC datasets

    Continental-scale niche differentiation of dominant topsoil archaea in drylands

    Get PDF
    15 págs.- 6 figuras.- 75 referenciasArchaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e. deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world.This research was supported by the National Natural Science Foundation of China (Nos. 31700463 and 31770430), National Scientific and Technological Program on Basic Resources Investigation (No. 2019FY102002), Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (No. 2019HJ2096001006), the Top Leading Talents in Gansu Province to J.D. and the Innovation Base Project of Gansu Province (No. 20190323). J.C.S. was supported by the U.S. Department of Energy-BER program, as part of an Early Career Award to J.C.S. at the Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract DEAC05-76RL01830. M.D.-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I +-D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D.-B. is also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformacion Economica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014–2020 Objetivo tematico ‘01 - Refuerzo de la investigacion, el desarrollo tecnologico y la innovacion’) associated with the research project P20_00879 (ANDABIOMA).Peer reviewe

    Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    Get PDF
    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above

    Aridity-driven shift in biodiversity–soil multifunctionality relationships

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification

    Synergy between nanozymes and natural enzymes on the hybrid MoS2 nanosheets/graphite microfiber for enhanced voltammetric determination of hydrogen peroxide

    No full text
    A biosensor for hydrogen peroxide (H2O2) has been developed based on the use of MoS2 nanosheets and graphite that are assembled to form a microfiber hybrid structure. The MoS2 nanosheets are synthesized in situ on a graphite microfiber. The chemical composition and surface morphology of the microfiber hybrid structure has been characterized. The microfiber is shown to display peroxidase-mimicking activity. In the next step, horseradish peroxidase, methylene blue, and chitosan are co-immobilized on the microfiber electrode. The use of MoS2 nanosheets warrants high electrochemical activity of immobilized enzyme on the electrode surface. The modified microfiber electrode, best operated at a voltage of − 0.3 V (vs. Ag/AgCl), can be used to sense H2O2 with a linear response in the 0.1 to 90 μM concentration range and with a determination limit of 30 nM (at S/N = 3). The good response is attributed to the synergistic enhancement of the synthetic nanozymes (few-layered MoS2 nanosheets) and immobilized natural horseradish peroxidase (HRP). [Figure not available: see fulltext.] © 2020, Springer-Verlag GmbH Austria, part of Springer Nature

    Uniform Carbon Layer Coated Mn<sub>3</sub>O<sub>4</sub> Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries

    No full text
    A facile one-step solvothermal reaction route to large-scale synthesis of carbon homogeneously wrapped manganese oxide (Mn<sub>3</sub>O<sub>4</sub>@C) nanocomposites for anode materials of lithium ion batteries was developed using manganese acetate monohydrate and polyvinylpyrrolidone as precursors and reactants. The synthesized Mn<sub>3</sub>O<sub>4</sub>@C nanocomposites were characterized by X-ray diffraction, field-emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The synthesized tetragonal structured Mn<sub>3</sub>O<sub>4</sub> (space group <i>I</i>41/<i>amd</i>) samples display nanorodlike morphology, with a width of about 200–300 nm and a thickness of about 15–20 nm. It is shown that the carbon layers with a thickness of 5 nm are homogeneously coated on the Mn<sub>3</sub>O<sub>4</sub> nanorods. It is indicated from lithium storage capacity estimation that the Mn<sub>3</sub>O<sub>4</sub>@C samples display enhanced capacity retention on charge/discharge cycling. Even after 50 cycles, the products remains stable capacity of 473 mA h g<sup>–1</sup>, which is as much 3.05 times as that of pure Mn<sub>3</sub>O<sub>4</sub> samples. Because of the low-cost, nonpollution, and stable capacity, the carbon homogeneously coated Mn<sub>3</sub>O<sub>4</sub>@C nanocomposites are promising anode material for lithium ion batteries
    corecore