391 research outputs found
Cost of coexisting with a relict large carnivore population: Impact of apennine brown bears, 2005–2015
Human-carnivore conflicts are a major conservation issue. As bears are expanding their range in Europe’s human-modified landscapes, it is increasingly important to understand, prevent, and address human-bear conflicts and evaluate mitigation strategies in areas of historical coexis-tence. Based on verified claims, we assessed costs, patterns, and drivers of bear damages in the relict Apennine brown bear population in the Abruzzo Lazio and Molise National Park (PNALM), central Italy. During 2005–2015, 203 ± 71 (SD) damage events were verified annually, equivalent to 75,987 ± 30,038 €/year paid for compensation. Most damages occurred in summer and fall, with livestock depredation, especially sheep and cattle calves, prevailing over other types of damages, with apiaries ranking second in costs of compensation. Transhumant livestock owners were less impacted than residential ones, and farms that adopted prevention measures loaned from the PNALM were less susceptible to bear damages. Livestock farms chronically damaged by bears represented 8 ± 3% of those annually impacted, corresponding to 24 ± 6% of compensation costs. Further improvements in the conflict mitigation policy adopted by the PNALM include integrated prevention, conditional compensation, and participatory processes. We discuss the implications of our study for Human-bear coexistence in broader contexts
Diagnostics of the tropical tropopause layer from in-situ observations and CCM data
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS).
Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (~500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.
The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O3 and H2O-O3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition.
The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model
Diagnostics of the tropical tropopause layer from in-situ observations and CCM data
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on the vertical tracers profiles, relative vertical tracers gradients, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS), using tropopause coordinates.
Observations come from the four tropical campaigns performed from 1998 to 2006 with the research aircraft Geophysica and have been directly compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.
The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O3 and H2O-O3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified, first, by their differing chemical composition.
The joint analysis and comparison of observed and modelled data allows us to evaluate the capability of the model in reproducing the observed vertical structure of the TTL and its variability, and also to assess whether observations from particular regions on a monthly timescale can be representative of the fine scale mean structure of the Tropical Tropopause Layer
Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling
We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely originated from convective cloud east of the flight. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that in the outflow of a large convective system, deep convection can largely modify chemical composition and aerosol distribution up to the tropical tropopause. Model analysis also shows that, on average, deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition
Morphology of the tropopause layer and lower stratosphere above a tropical cyclone : a case study on cyclone Davina (1999)
During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics
The effects of fiber inclusion on pet food sensory characteristics and palatability
Citation: Koppel, K., Monti, M., Gibson, M., Alavi, S., Di Donfrancesco, B., & Carciofi, A. C. (2015). The effects of fiber inclusion on pet food sensory characteristics and palatability. Animals, 5(1), 110-125. doi:10.3390/ani5010110The objectives of this study were to determine (a) the influence of fiber on the sensory characteristics of dry dog foods; (b) differences of coated and uncoated kibbles for aroma and flavor characteristics; (c) palatability of these dry dog foods; and (d) potential associations between palatability and sensory attributes. A total of eight fiber treatments were manufactured: a control (no fiber addition), guava fiber (3%, 6%, and 12%), sugar cane fiber (9%; large and small particle size), and wheat bran fiber (32%; large and small particle size). The results indicated significant effects of fibers on both flavor and texture properties of the samples. Bitter taste and iron and stale aftertaste were examples of flavor attributes that differed with treatment, with highest intensity observed for 12% guava fiber and small particle size sugar cane fiber treatments. Fracturability and initial crispness attributes were lowest for the sugar cane fiber treatments. Flavor of all treatments changed after coating with a palatant, increasing in toasted, brothy, and grainy attributes. The coating also had a masking effect on aroma attributes such as stale, flavor attributes such as iron and bitter taste, and appearance attributes such as porosity. Palatability testing results indicated that the control treatment was preferred over the sugar cane or the wheat bran treatment. The treatment with large sugarcane fiber particles was preferred over the treatment with small particles, while both of the wheat bran treatments were eaten at a similar level. Descriptive sensory analysis data, especially textural attributes, were useful in pinpointing the underlying characteristics and were considered to be reasons that may influence palatability of dog foods manufactured with inclusion of different fibers. © 2015 by the authors; licensee MDPI, Basel, Switzerland
Application of the seven-factor-model of personality to an Italian preschool sample
OBJECTIVE: Advances in dimensional assessment of children in healthy and clinical populations has renewed interest in the study of temperament. Cloninger's Temperament and Character Inventory (TCI) has shown high reliability and internal consistency. Adult and adolescent versions have been translated into a number of languages and validated in cross-cultural studies worldwide. To date only one preschool-TCI-based study has been conducted in early infancy with teachers as observers. The present study is aimed to test an Italian Preschool version of the Temperament and Character Inventory (PsTCI). This is the first replication and the first validation study of TCI on preschoolers with parents as observers. METHODS: 395 preschool children, recruited from pediatric communities and day-care centres throughout Italy, participated in the study. Parents of each child enrolled in the study and completed a PsTCI about the child. Standard psychometric tests of reliability and validation were performed. RESULTS: Exploratory factor analyses demonstrated the presence of distinct domains for temperament and character. TCI dimensions had good internal consistency with Cronbach's alpha ranging values (|0.60|-|0.81|). Gender differences were found for Harm Avoidance (β=-0.186; p≤0.001) and Self-Directedness (β=-0.216; p≤0.01), and accounted for 5-35arm-38-702- of the observed variance. CONCLUSION: The present work suggests the psychological complexity of Cloninger's model and confirms its application in pre-school children from diverse environmental and cultural backgrounds. The results confirm that Cloninger's instrument for temperament and character evaluations can also be used with different observers and highlight the importance of considering cultural and demographic differences in the assessment of temperament and character in preschoolers
Optical measurements of atmospheric particles from airborne platforms: in situ and remote sensing instruments for balloons and aircrafts
Multiwavelength laser backscattersondes (MAS) have been widely used from a variety of airborne platforms for
in situ measurements of optical properties of clouds and atmospheric particulate as well as their phase and composition.
Recently, a new miniaturized LIDAR (MULID) has been developed using state-of-art technology for
balloon borne profiling of the same quantities. A description of the two instruments, a survey of preliminary results
obtained during test flights and indications for future use are given
Cardiovascular risk in patients with severe mental illness in Italy
Background: Patients with severe mental illness (SMI), such as schizophrenia or bipolar disorders, are more frequently affected by metabolic syndrome and cardiovascular (CV) diseases than the general population, with a significant reduction in life expectancy. Beyond metabolic syndrome, quantifying the risk of CV morbidity in the long-term may help clinicians to put in place preventive strategies. In this study, we assessed 10-year CV risk in patients with SMI and healthy individuals using an algorithm validated on the Italian general population. Methods: Patients aged 35-69 years diagnosed with SMI were consecutively recruited from psychiatric acute care units. Single CV risk factors were assessed, and 10-year CV risk calculated by means of the CUORE Project 10-year CV risk algorithm, based on the combination of the following risk factors: age, systolic blood pressure, total and high-density lipoprotein cholesterol, diabetes, smoking habit, and hypertensive treatment. Patients' data were compared with those from the general population. The 10-year CV risk was log-transformed, and multivariable linear regression was used to estimate mean ratios, adjusting for age, and education. Results: Three hundred patients and 3,052 controls were included in the analysis. Among men, the 10-year CV risk score was very similar between patients with SMI and the general population (mean ratio [MR]: 1.02; 95%CI 0.77-1.37), whereas a 39% increase in 10-year CV risk was observed in women with SMI compared to the general population (MR: 1.39; 95%CI 1.16-1.66). Conclusions: In our study, women with SMI were consistently more at risk than the general population counterpart, even at younger age
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). <br><br> Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (~500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data. <br><br> The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O<sub>3</sub> and H<sub>2</sub>O-O<sub>3</sub> scatter plots and of the Probability Distribution Function (PDF) of the H<sub>2</sub>O-O<sub>3</sub> pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition. <br><br> The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model
- …