18 research outputs found
Impact of transcranial direct current stimulation (tDCS) on neuronal functions
Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes are highly sensitive to stimulation parameters, leading to difficulty maximizing the technique's effectiveness. Although reversing the polarity of stimulation often causes opposite effects, this is not always the case. Effective clinical application will require an understanding of how tDCS works; how it modulates a neuron; how it affects the local network; and how it alters inter-network signaling. We have summarized what is known regarding the mechanisms of tDCS from sub-cellular processing to circuit level communication with a particular focus on what can be learned from the polarity specificity of the effects
Cerebellar tDCS does not enhance performance in an implicit categorization learning task
Background: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates learning, but the few studies investigating cerebellar tDCS, however, are inconsistent. Objective: We investigate the effect of cerebellar tDCS on performance of an implicit categorization learning task. Methods: Forty participants performed a computerized version of an implicit categorization learning task where squares had to be sorted into two categories, according to an unknown but fixed rule that integrated both the size and luminance of the square. Participants did one round of categorization to familiarize themselves with the task and to provide a baseline of performance. After that, 20 participants received anodal tDCS (20 min, 1.5 mA) over the right cerebellum, and 19 participants received sham stimulation and simultaneously started a second session of the categorization task using a new rule. Results: As expected, subjects performed better in the second session than in the first, baseline session, showing increased accuracy scores and reduced reaction times. Over trials, participants learned the categorization rule, improving their accuracy and reaction times. However, we observed no effect of anodal tDCS stimulation on overall performance or on learning, compared to sham stimulation. Conclusion: These results suggest that cerebellar tDCS does not modulate performance and learning on an implicit categorization task
Superposition violations in the compensatory eye movement system
PURPOSE. Compensatory eye movements (CEM) maintain a stable image on the retina by minimizing retinal slip. The optokinetic reflex (OKR) and vestibulo-ocular reflex (VOR) compensate for low and high velocity stimuli, respectively. The OKR system is known to be highly nonlinear. The VOR is generally modeled as a linear system and assumed to satisfy the superposition and homogeneity principles. To probe CEM violation of the superposition principle, we recorded eye movement responses in C57BL/6 mice to sum of sine (SoS) stimulation, a combination of multiple nonharmonic inputs. METHODS. We tested the VOR, OKR, WOR (visually enhanced VOR), and SVOR (suppressed VOR). We used stimuli containing 0.6 Hz, 0.8 Hz, 1.0 Hz, and 1.9 Hz. Power spectra of SoS stimuli did not yield distortion products. Gains and delays of SoS and single sine (SS) responses were compared to yield relative gains and delays. RESULTS. We find the superposition principle is violated primarily in the OKR, VOR, and SVOR conditions. In OKR, we observed relative gain suppression of the lower SoS stimulus frequency component irrespective of the absolute frequency. Conversely, SVOR and VOR results showed gain enhancement of the lower frequency component and overall decrease in lead. Visually enhanced VOR results showed trends for overall gain suppression and delay decrease. CONCLUSIONS. Compensatory eye movements arguably depend on predictive signals. These results may reflect better prediction for SS stimuli. Natural CEM system stimulation generally involves complex frequency spectra. Use of SoS stimuli is a step toward unravelling the signals that really drive CEM and the predictive algorithms they depend on
Cerebellar tDCS does not improve performance in probabilistic classification learning
In this study, the role of the cerebellum in a cognitive learning task using transcranial direct current stimulation (tDCS) was investigated. Using a weather prediction task, subjects had to learn the probabilistic associations between a stimulus (a combination of cards) and an outcome (sun or rain). This task is a variant of a probabilistic classification learning task, for which it has been reported that prefrontal tDCS enhances performance. Using a between-subject design, all 30 subjects learned to improve their performance with increasing accuracies and shortened response times over a series of 500 trials. Subjects also became more confident in their prediction during the experiment. However, no differences in performance and learning were observed between subjects receiving sham stimulation (n = 10) or anodal stimulation (2 mA for 20 min) over either the right cerebellum (n = 10) or the left prefrontal cortex (n = 10). This suggests that stimulating the brain with cerebellar tDCS does not readily influence probabilistic classification performances, probably due to the rather complex nature of this cognitive task
A Neuroanatomically Grounded Optimal Control Model of the Compensatory Eye Movement System in Mice
We present a working model of the compensatory eye movement system in mice. We challenge the model with a data set of eye movements in mice (n =34) recorded in 4 different sinusoidal stimulus conditions with 36 different combinations of frequency (0.1–3.2 Hz) and amplitude (0.5–8°) in each condition. The conditions included vestibular stimulation in the dark (vestibular-ocular reflex, VOR), optokinetic stimulation (optokinetic reflex, OKR), and two combined visual/vestibular conditions (the visual-vestibular ocular reflex, vVOR, and visual suppression of the VOR, sVOR). The model successfully reproduced the eye movements in all conditions, except for minor failures to predict phase when gain was very low. Most importantly, it could explain the interaction of VOR and OKR when the two reflexes are activated simultaneously during vVOR stimulation. In addition to our own data, we also reproduced the behavior of the compensatory eye movement system found in the existing literature. These include its response to sum-of-sines stimuli, its response after lesions of the nucleus prepositus hypoglossi or the flocculus, characteristics of VOR adaptation, and characteristics of drift in the dark. Our model is based on ideas of state prediction and forward modeling that have been widely used in the study of motor control. However, it represents one of the first quantitative efforts to simulate the full range of behaviors of a specific system. The model has two separate processing loops, one for vestibular stimulation and one for visual stimulation. Importantly, state prediction in the visual processing loop depends on a forward model of residual ret
Cerebellar transcranial direct current stimulation effects on saccade adaptation
Saccade adaptation is a cerebellar-mediated type of motor learning in which the oculomotor system is exposed to repetitive errors. Different types of saccade adaptations are thought to involve distinct underlying cerebellar mechanisms. Transcranial direct current stimulation (tDCS) induces changes in neuronal excitability in a polarity-specific manner and offers a modulatory, noninvasive, functional insight into the learning aspects of different brain regions. We aimed to modulate the cerebellar influence on saccade gains during adaptation using tDCS. Subjects performed an inward (n = 10) or outward (n = 10) saccade adaptation experiment (25% intrasaccadic target step) while receiving 1.5 mA of anodal cerebellar tDCS delivered by a small contact electrode. Compared to sham stimulation, tDCS increased learning of saccadic inward adaptation but did not affect learning of outward adaptation. This may imply that plasticity mechanisms in the cerebellum are different between inward and outward adaptation. TDCS could have influenced specific cerebellar areas that contribute to inward but not outward adaptation. We conclude that tDCS can be used as a neuromodulatory technique to alter cerebellar oculomotor output, arguably by engaging wider cerebellar areas and increasing the available resources for learning
Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation
Several studies have identified transcranial direct current stimulation (tDCS) as a potential tool in the rehabilitation of cerebellar disease. Here, we tested whether tDCS could alleviate motor impairments of subjects with cerebellar degeneration. Three groups took part in this study: 20 individuals with cerebellar degeneration, 20 age-matched controls, and 30 young controls. A standard reaching task with force-field perturbations was used to compare motor adaptation among groups and to measure the effect of stimulation of the cerebellum or primary motor cortex (M1). Cerebellar subjects and age-matched controls were tested during each stimulation type (cerebellum, M1, and sham) with a break of 1 wk among each of the three sessions. Young controls were tested during one session under one of three stimulation types (anodal cerebellum, cathodal cerebellum, or sham). As expected, individuals with cerebellar degeneration had a reduced ability to adapt to motor perturbations. Importantly, cerebellar patients did not benefit from anodal stimulation of the cerebellum or M1. Furthermore, no stimulation effects could be detected in aging and young controls. The present null results cannot exclude more subtle tDCS effects in larger subject populations and between-subject designs. Moreover, it is still possible that tDCS affects motor adaptation in cerebellar subjects and control subjects under a different task or with alternative stimulation parameters. However, for tDCS to become a valuable tool in the neurorehabilitation of cerebellar disease, stimulation effects should be present in group sizes commonly used in this rare patient population and be more consistent and predictable across subjects and tasks. NEW & NOTEWORTHY Transcranial direct current stimulation (tDCS) has been identified as a potential tool in the rehabilitation of cerebellar disease. We investigated whether tDCS of the cerebellum and primary motor cortex could alleviate motor impairments of subjects with cerebellar degeneration. The present study did not find stimulation effects of tDCS in young controls, aging controls, and individuals with cerebellar degeneration during reach adaptation. Our results require a re-evaluation of the clinical potential of tDCS in cerebellar patients
TMS motor mapping: Comparing the absolute reliability of digital reconstruction methods to the golden standard
Background: Changes in transcranial magnetic stimulation motor map parameters can be used to quantify plasticity in the human motor cortex. The golden standard uses a counting analysis of motor evoked potentials (MEPs) acquired with a predefined grid. Recently, digital reconstruction methods have been proposed, allowing MEPs to be acquired with a faster pseudorandom procedure. However, the reliability of these reconstruction methods has never been compared to the golden standard. Objective: To compare the absolute reliability of the reconstruction methods with the golden standard. Methods: In 21 healthy subjects, both grid and pseudorandom acquisition were performed twice on the first day and once on the second day. The standard error of measurement was calculated for the counting analysis and the digital reconstructions. Results: The standard error of measurement was at least equal using digital reconstructions. Conclusion: Pseudorandom acquisition and digital reconstruction can be used in intervention studies without sacrificing reliability
Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning
Background: Cerebellar transcranial direct current stimulation has been reported to enhance motor associative learning and motor adaptation, holding promise for clinical application in patients with movement disorders. However, behavioral benefits from cerebellar tDCS have been inconsistent. Objective: Identifying determinants of treatment success is necessary. BDNF Val66Met is a candidate determinant, because the polymorphism is associated with motor skill learning and BDNF is thought to mediate tDCS effects. Methods: We undertook two cerebellar tDCS studies in subjects genotyped for BDNF Val66Met. Subjects performed an eyeblink conditioning task and received sham, anodal or cathodal tDCS (N = 117, between-subjects design) or a vestibulo-ocular reflex adaptation task and received sham and anodal tDCS (N = 51 subjects, within-subjects design). Performance was quantified as a learning parameter from 0 to 100%. We investigated (1) the distribution of the learning parameter with mixture modeling presented as the mean (M), standard deviation (S) and proportion (P) of the groups, and (2) the role of BDNF Val66Met and cerebellar tDCS using linear regression presented as the regression coefficients (B) and odds ratios (OR) with equally-tailed intervals (ETIs). Results: For the eyeblink conditioning task, we found distinct groups of learners (MLearner = 67.2%; SLearner = 14.7%; PLearner = 61.6%) and non-learners (MNon-learner = 14.2%; SNon-learner = 8.0%; PNon-learner = 38.4%). Carriers of the BDNF Val66Met polymorphism were more likely to be learners (OR = 2.7 [1.2 6.2]). Within the group of learners, anodal tDCS supported eyeblink conditioning in BDNF Val66Met non-carriers (B = 11.9% 95%ETI = [0.8 23.0]%), but not in carriers (B = 1.0% 95%ETI = [-10.2 12.1]%). For the vestibulo-ocular reflex adaptation task, we found no effect of BDNF Val66Met (B = −2.0% 95%ETI = [-8.7 4.7]%) or anodal tDCS in either carriers (B = 3.4% 95%ETI = [-3.2 9.5]%) or non-carriers (B = 0.6% 95%ETI = [-3.4 4.8]%). Finally, we performed additional saccade and visuomotor adaptation experiments (N = 72) to investigate the general role of BDNF Val66Met in cerebellum-dependent learning and found no difference between carriers and non-carriers for both saccade (B = 1.0% 95%ETI = [-8.6 10.6]%) and visuomotor adaptation (B = 2.7% 95%ETI = [-2.5 7.9]%). Conclusions: The specific role for BDNF Val66Met in eyeblink conditioning, but not vestibulo-ocular reflex adaptation, saccade adaptation or visuomotor adaptation could be related to dominance of the role of simple spike suppression of cerebellar Purkinje cells with a high baseline firing frequency in eyeblink conditioning. Susceptibility of non-carriers to anodal tDCS in eyeblink conditioning might be explained by a relatively larger effect of tDCS-induced subthreshold depolarization in this group, which might increase the spontaneous firing frequency up to the level of that of the carriers