1,530 research outputs found
Autocatalytic and cooperatively-stabilized dissociation of water on a stepped platinum surface
Water-metal interfaces are ubiquitous and play a key role in many chemical
processes, from catalysis to corrosion. Whereas water adlayers on atomically
flat transition metal surfaces have been investigated in depth, little is known
about the chemistry of water on stepped surfaces, commonly occurring in
realistic situations. Using first-principles simulations we study the
adsorption of water on a stepped platinum surface. We find that water adsorbs
preferentially at the step edge, forming linear clusters or chains, stabilized
by the cooperative effect of chemical bonds with the substrate and hydrogen
bonds. In contrast with flat Pt, at steps water molecules dissociate forming
mixed hydroxyl/water structures, through an autocatalytic mechanism promoted by
hydrogen bonding. Nuclear quantum effects contribute to stabilize partially
dissociated cluster and chains. Together with the recently demonstrated
attitude of water chains adsorbed on stepped Pt surfaces to transfer protons
via thermally activated hopping, these findings candidate these systems as
viable proton wires.Comment: 19 pages, 4 figure
Evolution of the structure of amorphous ice - from low-density amorphous (LDA) through high-density amorphous (HDA) to very high-density amorphous (VHDA) ice
We report results of molecular dynamics simulations of amorphous ice for
pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by
pressure-induced amorphization of Ih ice at T=80 K is annealed to T=170 K at
various pressures to allow for relaxation. Upon increase of pressure, relaxed
amorphous ice undergoes a pronounced change of structure, ranging from the
low-density amorphous ice (LDA) at p=0, through a continuum of HDA states to
the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The
main part of the overall structural change takes place within the HDA
megabasin, which includes a variety of structures with quite different local
and medium-range order as well as network topology and spans a broad range of
densities. The VHDA represents the limit to densification by adapting the
hydrogen-bonded network topology, without creating interpenetrating networks.
The connection between structure and metastability of various forms upon
decompression and heating is studied and discussed. We also discuss the analogy
with amorphous and crystalline silica. Finally, some conclusions concerning the
relation between amorphous ice and supercooled water are drawn.Comment: 11 pages, 12 postscript figures. To be published in The Journal of
Chemical Physic
Nanofriction behavior of cluster-assembled carbon films
We have characterized the frictional properties of nanostructured (ns) carbon
films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic
Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed
on the basis of a modified Amonton's law for friction, stating a linear
dependence of friction on load plus an adhesive offset accounting for a finite
friction force in the limit of null total applied load. Molecular Dynamics
simulations of the interaction of the AFM tip with the nanostructured carbon
confirm the validity of the friction model used for this system. Experimental
results show that the friction coefficient is not influenced by the
nanostructure of the films nor by the relative humidity. On the other hand the
adhesion coefficient depends on these parameters.Comment: 22 pages, 6 figures, RevTex
Quantum Sensor Miniaturization
The classical bound on image resolution defined by the Rayleigh limit can be
beaten by exploiting the properties of quantum mechanical entanglement. If
entangled photons are used as signal states, the best possible resolution is
instead given by the Heisenberg limit, an improvement proportional to the
number of entangled photons in the signal. In this paper we present a novel
application of entanglement by showing that the resolution obtained by an
imaging system utilizing separable photons can be achieved by an imaging system
making use of entangled photons, but with the advantage of a smaller aperture,
thus resulting in a smaller and lighter system. This can be especially valuable
in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology
Letter
Polyamorphism of ice at low temperatures from constant-pressure simulations
We report results of MD simulations of amorphous ice in the pressure range 0
- 22.5 kbar. The high-density amorphous ice (HDA) prepared by compression of Ih
ice at T = 80 K is annealed to T = 170 K at intermediate pressures in order to
generate relaxed states. We confirm the existence of recently observed
phenomena, the very high-density amorphous ice and a continuum of HDA forms. We
suggest that both phenomena have their origin in the evolution of the network
topology of the annealed HDA phase with decreasing volume, resulting at low
temperatures in the metastability of a range of densities.Comment: 11 pages, 5 postscript figures. To be published in Physical Review
Letter
Water on Pt(111): the importance of proton disorder
The structure of a water adlayer on Pt(111) surface is investigated by
extensive first principle calculations. Only allowing for proton disorder the
ground state energy can be found. This results from an interplay between
water/metal chemical bonding and the hydrogen bonding of the water network. The
resulting short O-Pt distance accounts for experimental evidences. The novelty
of these results shed a new light on relevant aspects of water-metal
interaction.Comment: 10 pages 4 figures (color
Freezing of a Lennard-Jones fluid: from nucleation to spinodal regine
Using molecular dynamics, we investigate the crystal nucleation in a Lennard-Jones fluid as a function of the degree of supercooling. At moderate supercooling, a nucleation picture applies, while for deeper quenches, the phenomenon progressively acquires a spinodal character. We show that in the nucleation regime, the freezing is a two-step process. The formation of the critical nucleus is indeed preceded by the abrupt formation of a precritical crystallite from a density fluctuation in the fluid. In contrast, as the degree of supercooling is increased, crystallization proceeds in a more continuous and collective fashion and becomes more spatially diffuse, indicating that the liquid is unstable and crystallizes by a spinodal mechanism
Canonical sampling through velocity-rescaling
We present a new molecular dynamics algorithm for sampling the canonical
distribution. In this approach the velocities of all the particles are rescaled
by a properly chosen random factor. The algorithm is formally justified and it
is shown that, in spite of its stochastic nature, a quantity can still be
defined that remains constant during the evolution. In numerical applications
this quantity can be used to measure the accuracy of the sampling. We
illustrate the properties of this new method on Lennard-Jones and TIP4P water
models in the solid and liquid phases. Its performance is excellent and largely
independent on the thermostat parameter also with regard to the dynamic
properties
- …