217 research outputs found

    Radial velocities of pulsating subdwarf B stars: KPD 2109+4401 and PB 8783

    Get PDF
    High-speed spectroscopy of two pulsating subdwarf B stars, KPD 2109+4401 and PB 8783, is presented. Radial motions are detected with the same frequencies as reported from photometric observations and with amplitudes of ~2 km/sec in two or more independent modes. These represent the first direct observations of surface motion due to multimode non-radial oscillations in subdwarf B stars. In the case of the sdB+F binary PB 8783, the velocities of both components are resolved; high-frequency oscillations are found only in the sdB star and not the F star. There also appears to be evidence for mutual motion of the binary components. If confirmed, it implies that the F-type companion is >~1.2 times more massive than the sdB star, while the amplitude of the F star acceleration over 4 hours would constrain the orbital period to lie between 0.5 and 3.2d

    The Central Star Candidate of the Planetary Nebula Sh2-71: Photometric and Spectroscopic Variability

    Full text link
    We present the analysis of several newly obtained and archived photometric and spectroscopic datasets of the intriguing and yet poorly understood 13.5-mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal lightcurve with a period of 68 days and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 days. In addition, the comparison between U and V lightcurves revealed that the 68-day brightness variations are accompanied by a variable reddening effect of ΔE(U−V)=0.38\Delta E(U-V)=0.38. Spectroscopic datasets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionised metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68-day brightness variations. The mean radial velocity of the observed star was measured to be ∌\sim26 km/s with an amplitude of ±\pm40 km/s. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.Comment: 9 pages, 6 figures (main article). 7 pages, 6 figures (appendix). Accepted for publication in MNRA

    Single site observations of \textit{TESS} single transit detections

    Full text link
    Context: TESS has been successfully launched and has begin data acquisition. To expedite the science that may be performed with the resulting data it is necessary to gain a good understanding of planetary yields. Given the observing strategy employed by TESS the probability of detecting single transits in long period systems is increased. These systems require careful consideration. Aims: To simulate the number of TESS transit detections during its 2 year mission with a particular emphasis on single transits. Additionally, to determine the feasibility of ground-based follow-up observations from a single site. Methods: A distribution of planets is simulated around the ∌\sim 4 million stars in the TESS Candidate Target List. These planets are tested for detectable transits and characterised. Based on simulated parameters the single transit detections are further analysed to determine which are amenable to ground-based follow-up. Results: TESS will discover an approximate lower bound of 4700 planets with around 460 being single transits. A large fraction of these will be observable from a single ground-based site. This paper finds that, in a single year, approximately 1000 transit events of around 320 unique TESS single transit detections are theoretically observable. Conclusions: As we consider longer period exoplanets the need for exploring single transit detections increases. For periods ≳45\gtrsim45 days the number of single transit detections outnumber multitransits by a factor of 3 (82±\pm18 and 25±\pm7 respectively) a factor which only grows as longer period detections are considered. Therefore, it is worth expending the extra effort required to follow-up these more challenging, but potentially very rewarding, discoveries. Additionally, we conclude that a large fraction of these targets can be theoretically observed from just a single ground-based site.Comment: 12 pages, 19 figures. To be published in Astronomy and Astrophysic

    Detecting Circumbinary Exoplanets: Understanding Transit Timing

    Get PDF
    We have derived and tested a simple analytical model for placing limits on the transit timing variations of circumbinary exoplanets. These are generally of days in magnitude, dwarfing those found in multi-planet systems. The derived method is fast, efficient and is accurate to approximately 1% in predicting limits on the possible times of transits over a 3-year campaig

    Transit shapes and self organising maps as a tool for ranking planetary candidates : application to Kepler and K2

    Get PDF
    A crucial step in planet hunting surveys is to select the best candidates for follow up observations, given limited telescope resources. This is often performed by human ‘eyeballing’, a time consuming and statistically awkward process. Here we present a new, fast machine learning technique to separate true planet signals from astrophysical false positives. We use Self Organising Maps (SOMs) to study the transit shapes of Kepler and K2 known and candidate planets. We find that SOMs are capable of distinguishing known planets from known false positives with a success rate of 87.0%, using the transit shape alone. Furthermore, they do not require any candidates to be dispositioned prior to use, meaning that they can be used early in a mission’s lifetime. A method for classifying candidates using a SOM is developed, and applied to previously unclassified members of the Kepler KOI list as well as candidates from the K2 mission. The method is extremely fast, taking minutes to run the entire KOI list on a typical laptop. We make Python code for performing classifications publicly available, using either new SOMs or those created in this work. The SOM technique represents a novel method for ranking planetary candidate lists, and can be used both alone or as part of a larger autovetting code

    An examination of the effect of the TESS extended mission on southern hemisphere monotransits

    Full text link
    Context: NASA recently announced an extended mission for TESS. As a result it is expected that the southern ecliptic hemisphere will be re-observed approximately two years after the initial survey. Aims: We aim to explore how TESS re-observing the southern ecliptic hemisphere will impact the number and distribution of mono-transits discovered during the first year of observations. This simulation will be able to be scaled to any future TESS re-observations. Methods: We carry out an updated simulation of TESS detections in the southern ecliptic hemisphere. This simulation includes realistic Sector window-functions based on the first 11 sectors of SPOC 2 min SAP lightcurves. We then extend this simulation to cover the expected Year 4 of the mission when TESS will re-observed the southern ecliptic fields. For recovered monotransits we also look at the possibility of predicting the period based on the coverage in the TESS data. Results: We find an updated prediction of 339 monotransits from the TESS Year 1 southern ecliptic hemisphere, and that approximately 80% of these systems (266/339) will transit again in the Year 4 observations. The Year 4 observations will also contribute new monotransits not seen in Year 1, resulting in a total of 149 monotransits from the combined Year 1 and Year 4 data sets. We find that 75% (189/266) of recovered Year 1 monotransits will only transit once in the Year 4 data set. For these systems we will be able to constrain possible periods, but period aliasing due to the large time gap between Year 1 and Year 4 observations means that the true period will remain unknown with further spectroscopic or photometric follow-up.Comment: 6 pages, 6 figures. Version to be published Astronomy and Astrophysic

    Revisiting the Kepler field with TESS: Improved ephemerides using TESS 2min data

    Get PDF
    Up to date planet ephemerides are becoming increasingly important as exoplanet science moves from detecting exoplanets to characterising their architectures and atmospheres in depth. In this work ephemerides are updated for 22 Kepler planets and 4 Kepler planet candidates, constituting all Kepler planets and candidates with sufficient signal to noise in the TESS 2min dataset. A purely photometric method is utilised here to allow ephemeris updates for planets even when they do not posses significant radial velocity data. The obtained ephemerides are of very high precision and at least seven years 'fresher' than archival ephemerides. In particular, significantly reduced period uncertainties for Kepler-411d, Kepler-538b and the candidates K00075.01/K00076.01 are reported. O-C diagrams were generated for all objects, with the most interesting ones discussed here. Updated TTV fits of five known multiplanet systems with significant TTVs were also attempted (Kepler-18, Kepler-25, Kepler-51, Kepler-89, and Kepler-396), however these suffered from the comparative scarcity and dimness of these systems in TESS. Despite these difficulties, TESS has once again shown itself to be an incredibly powerful follow-up instrument as well as a planet-finder in its own right. Extension of the methods used in this paper to the 30min-cadence TESS data and TESS extended mission has the potential to yield updated ephemerides of hundreds more systems in the future.Comment: 13 pages, 11 figures, 4 tables, accepted for publication in MNRA
    • 

    corecore