15 research outputs found

    A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics

    Get PDF
    In their 2012 report, the President\u27s Council of Advisors on Science and Technology advocated “replacing standard science laboratory courses with discovery-based research courses”—a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates

    A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics

    Full text link
    There have been numerous calls to engage students in science as science is done. A survey of 90-plus faculty members explores barriers and incentives when developing a research-based genomics course. The results indicate that a central core supporting a national experiment can help overcome local obstacles

    A central support system can facilitate implementation and sustainability of a Classroom-based Undergraduate Research Experience (CURE) in Genomics

    Get PDF
    In their 2012 report, the President\u27s Council of Advisors on Science and Technology advocated replacing standard science laboratory courses with discovery-based research courses -a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates

    A course-based research experience: how benefits change with increased investment in instructional time

    Get PDF
    There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit

    Use of microsatellite loci and AFLP markers to verify gynogenesis and clonal lines in Nile tilapia Oreochromis niloticus L.

    No full text
    To develop an effective system for parentage analysis in gynogenetic and clonal progeny of Nile tilapia, Oreochromis niloticus L., polymorphic microsatellite loci and amplified fragment length polymorphisms (AFLPs) were investigated in several gynogenetic families and clonal lines. Six microsatellite loci were screened in two meiotic gynogenetic families to look for loci with high gene-centromere recombination rates, which can be used to discriminate meiotic from mitotic gynogenetics. Microsatellite loci UNH189 and UNH211 showed 96.7% and 92.0% heterozygosity, respectively, in these families, while other loci showed lower recombination frequencies. Scoring both UNH189 and UNH211 would give a very low probability of an individual meiotic gynogenetic being homozygous for both loci. Multiplex polymerase chain reaction of microsatellite loci was used to verify parentage in four families of mitotic gynogenetics and five fully inbred clonal lines. The genotype of each clonal line should serve as a unique identifier. Twelve AFLP primers were also investigated and 26 diagnostic AFLP bands were identified to follow inheritance in mitotic gynogenetic individuals. Amplified fragment length polymorphisms were found to be effective for this purpose but microsatellites were more appropriate since they are co-dominant, while AFLPs are dominant markers. A multiplex of the microsatellite loci used in this study would be useful for general parental assignment as well as for the analysis of the products of chromosome set manipulations

    Data from: Spatial genetic structure in American black bears (Ursus americanus): female philopatry is variable and related to population history

    No full text
    Previously, American black bears (Ursus americanus) were thought to follow the pattern of female philopatry and male-biased dispersal. However, recent studies have identified deviations from this pattern. Such flexibility in dispersal patterns can allow individuals greater ability to acclimate to changing environments. We explored dispersal and spatial genetic relatedness patterns across ten black bear populations—including long established (historic), with known reproduction >50 years ago, and newly established (recent) populations, with reproduction recorded <50 years ago—in the Interior Highlands and Southern Appalachian Mountains, United States. We used spatially-explicit, individual-based genetic simulations to model gene flow under scenarios with varying levels of population density, genetic diversity, and female philopatry. Using measures of genetic distance and spatial autocorrelation, we compared metrics between sexes, between population types (historic and recent), and among simulated scenarios which varied in density, genetic diversity, and sex-biased philopatry. In empirical populations, females in recent populations exhibited stronger patterns of isolation-by-distance (IBD) than females and males in historic populations. In simulated populations, low density populations had a stronger indication of IBD than medium to high density populations; however, this effect varied in empirical populations. Condition dependent dispersal strategies may permit species to cope with novel conditions and rapidly expand populations. Pattern-process modelling can provide qualitative and quantitative means to explore variable dispersal patterns, and could be employed in other species, particularly to anticipate range shifts in response to changing climate and habitat conditions

    A central support system can facilitate implementation and sustainability of a Classroom-based Undergraduate Research Experience (CURE) in Genomics.

    Get PDF
    In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates

    A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics

    No full text
    In their 2012 report, the President's Council of Advisors on Science and Technology advocated “replacing standard science laboratory courses with discovery-based research courses”—a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates
    corecore