5 research outputs found
Ultrafast nano-imaging of the order parameter in a structural phase transition
Understanding microscopic processes in materials and devices that can be
switched by light requires experimental access to dynamics on nanometer length
and femtosecond time scales. Here, we introduce ultrafast dark-field electron
microscopy, tailored to map the order parameter across a structural phase
transition. We track the evolution of charge-density wave domains in 1T-TaS2
after ultrashort laser excitation, elucidating relaxation pathways and domain
wall dynamics. The unique benefits of selective contrast enhancement will
inspire future beam shaping technology in ultrafast transmission electron
microscopy.Comment: Main text, supplementary materials, and five movie
Coulomb-correlated electron number states in a transmission electron microscope beam
We demonstrate the generation of Coulomb-correlated pair, triple and
quadruple states of free electrons by femtosecond photoemission from a
nanoscale field emitter inside a transmission electron microscope. Event-based
electron spectroscopy allows a spatial and spectral characterization of the
electron ensemble emitted by each laser pulse. We identify distinctive energy
and momentum correlations arising from acceleration-enhanced interparticle
energy exchange, revealing strong few-body Coulomb interactions at an energy
scale of about two electronvolts. State-sorted beam caustics show a discrete
increase in virtual source size and longitudinal source shift for few-electron
states, associated with transverse momentum correlations. We observe
field-controllable electron antibunching, attributed primarily to transverse
Coulomb deflection. The pronounced spatial and spectral characteristics of
these electron number states allow filtering schemes that control the
statistical distribution of the pulse charge. In this way, the fraction of
specific few-electron states can be actively suppressed or enhanced,
facilitating the preparation of highly non-Poissonian electron beams for
microscopy and lithography, including future heralding schemes and correlated
multi-electron probing
Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters
Tip-based photoemission electron sources offer unique properties for ultrafast imaging, diffraction, and spectroscopy experiments with highly coherent few-electron pulses. Extending this approach to increased bunch-charges requires a comprehensive experimental study on Coulomb interactions in nanoscale electron pulses and their impact on beam quality. For a laser-driven Schottky field emitter, we assess the transverse and longitudinal electron pulse properties in an ultrafast transmission electron microscope at a high photoemission current density. A quantitative characterization of electron beam emittance, pulse duration, spectral bandwidth, and chirp is performed. Due to the cathode geometry, Coulomb interactions in the pulse predominantly occur in the direct vicinity to the tip apex, resulting in a well-defined pulse chirp and limited emittance growth. Strategies for optimizing electron source parameters are identified, enabling advanced ultrafast transmission electron microscopy approaches, such as phase-resolved imaging and holography