84 research outputs found
Ultrafast nano-imaging of the order parameter in a structural phase transition
Understanding microscopic processes in materials and devices that can be
switched by light requires experimental access to dynamics on nanometer length
and femtosecond time scales. Here, we introduce ultrafast dark-field electron
microscopy, tailored to map the order parameter across a structural phase
transition. We track the evolution of charge-density wave domains in 1T-TaS2
after ultrashort laser excitation, elucidating relaxation pathways and domain
wall dynamics. The unique benefits of selective contrast enhancement will
inspire future beam shaping technology in ultrafast transmission electron
microscopy.Comment: Main text, supplementary materials, and five movie
Light-induced hexatic state in a layered quantum material
The tunability of materials properties by light promises a wealth of future applications in energy conversion and information technology. Strongly correlated materials such as transition-metal dichalcogenides (TMDCs) offer optical control of electronic phases, charge ordering and interlayer correlations by photodoping. Here, we find the emergence of a transient hexatic state in a TMDC thin-film during the laser-induced transformation between two charge-density wave (CDW) phases. Introducing tilt-series ultrafast nanobeam electron diffraction, we reconstruct CDW rocking curves at high momentum resolution. An intermittent suppression of three-dimensional structural correlations promotes a loss of in-plane translational order characteristic of a hexatic intermediate. Our results demonstrate the merit of tomographic ultrafast structural probing in tracing coupled order parameters, heralding universal nanoscale access to laser-induced dimensionality control in functional heterostructures and devices
Coulomb-correlated few-electron states in a transmission electron microscope beam
We observe Coulomb-correlated electron pair and triple states generated by femtosecond photoemission from a nanoscale field emitter inside a transmission electron microscope. Event-based electron spectroscopy allows for spatial and spectral characterization of the electrons emitted by each laser pulse. Distinctive energy and momentum correlations of two- and three-electron states are identified, revealing a strong few-body Coulomb interaction at an energy scale of about two electronvolts. State-sorted beam caustics show a discrete increase in virtual source size and longitudinal source shift for few-electron states, associated with transverse momentum correlations. The pronounced spatial and spectral characteristics of these electron number states allow for filtering schemes that control the statistical distribution of the pulse charge. In this way, the fraction of specific few-electron states can be actively suppressed or enhanced, facilitating the preparation of highly non-Poissonian electron beams for microscopy and lithography, including future schemes in correlated two-electron probing
Coulomb-correlated electron number states in a transmission electron microscope beam
We demonstrate the generation of Coulomb-correlated pair, triple and
quadruple states of free electrons by femtosecond photoemission from a
nanoscale field emitter inside a transmission electron microscope. Event-based
electron spectroscopy allows a spatial and spectral characterization of the
electron ensemble emitted by each laser pulse. We identify distinctive energy
and momentum correlations arising from acceleration-enhanced interparticle
energy exchange, revealing strong few-body Coulomb interactions at an energy
scale of about two electronvolts. State-sorted beam caustics show a discrete
increase in virtual source size and longitudinal source shift for few-electron
states, associated with transverse momentum correlations. We observe
field-controllable electron antibunching, attributed primarily to transverse
Coulomb deflection. The pronounced spatial and spectral characteristics of
these electron number states allow filtering schemes that control the
statistical distribution of the pulse charge. In this way, the fraction of
specific few-electron states can be actively suppressed or enhanced,
facilitating the preparation of highly non-Poissonian electron beams for
microscopy and lithography, including future heralding schemes and correlated
multi-electron probing
OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila
Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cell
OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila.
Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells
Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams
Deutschunterricht in der 5. und 6. Jahrgangsstufe: Lehrerhandbuch zu LIST Sprachbuch 5 und 6 und LIST Schülertraining Deutsch mit einem praxisbezogenen "Grundkurs" Grammatik
No abstract availabl
- …