608 research outputs found
Interplay of Na+ Balance and Immunobiology of Dendritic Cells
Local Na+ balance emerges as an important factor of tissue microenvironment. On the one hand, immune cells impact on local Na+ levels. On the other hand, Na+ availability is able to influence immune responses. In contrast to macrophages, our knowledge of dendritic cells (DCs) in this state of affair is rather limited. Current evidence suggests that the impact of increased Na+ on DCs is context dependent. Moreover, it is conceivable that DC immunobiology might also be influenced by Na+-rich-diet-induced changes of the gut microbiome
Tissue Sodium Content and Arterial Hypertension in Obese Adolescents
Early-onset obesity is known to culminate in type 2 diabetes, arterial hypertension and subsequent cardiovascular disease. The role of sodium (Na+) homeostasis in this process is incompletely understood, yet correlations between Na+ accumulation and hypertension have been observed in adults. We aimed to investigate these associations in adolescents. A cohort of 32 adolescents (13-17 years), comprising 20 obese patients, of whom 11 were hypertensive, as well as 12 age-matched controls, underwent 23Na-MRI of the left lower leg with a standard clinical 3T scanner. Median triceps surae muscle Na+ content in hypertensive obese (11.95 mmol/L [interquartile range 11.62-13.66]) was significantly lower than in normotensive obese (13.63 mmol/L [12.97-17.64]; p = 0.043) or controls (15.37 mmol/L [14.12-16.08]; p = 0.012). No significant differences were found between normotensive obese and controls. Skin Na+ content in hypertensive obese (13.33 mmol/L [11.53-14.22] did not differ to normotensive obese (14.12 mmol/L [13.15-15.83]) or controls (11.48 mmol/L [10.48-12.80]), whereas normotensive obese had higher values compared to controls (p = 0.004). Arterial hypertension in obese adolescents is associated with low muscle Na+ content. These findings suggest an early dysregulation of Na+ homeostasis in cardiometabolic disease. Further research is needed to determine whether this association is causal and how it evolves in the transition to adulthood
Metabolic, Mental and Immunological Effects of Normoxic and Hypoxic Training in Multiple Sclerosis Patients: A Pilot Study
Background: Physical activity might attenuate inflammation and neurodegeneration in multiple sclerosis (MS). Erythropoietin, which is produced upon exposure to hypoxia, is thought to act as a neuroprotective agent in MS. Therefore, we studied the effects of intermittent hypoxic training on activity energy expenditure, maximal workload, serum erythropoietin, and immunophenotype focusing on regulatory and IL-17A-producing T cells.Methods: We assigned 34 relapsing-remitting MS patients within a randomized, single blind, parallel-group study to either normoxic (NO) or hypoxic (HO) treadmill training, both 3 times/week for 1 h over 4 weeks (Clinicaltrials.gov identifier: NCT02509897). Before and after training, activity energy expenditure (metabolic chamber), maximal workload (incremental treadmill test), walking ability, depressive symptoms (Beck Depression Inventory I), serum erythropoietin concentrations, and immunophenotype of peripheral blood mononuclear cells (PBMCs) were assessed.Results: Energy expenditure did not change due to training in both groups, but was rather fueled by fat than by carbohydrate oxidation after HO training (P = 0.002). Maximal workload increased by 40 Watt and 42 Watt in the NO and HO group, respectively (both P < 0.0001). Distance patients walked in 6 min increased by 25 m and 27 m in the NO and HO group, respectively (NO P = 0.02; HO P = 0.01). Beck Depression Inventory score markedly decreased in both groups (NO P = 0.03; HO P = 0.0003). NO training shifted Treg subpopulations by increasing and decreasing the frequency of CD39+ and CD31+ Tregs, respectively, and decreased IL-17A-producing CD4+ cells. HO training provoked none of these immunological changes. Erythropoietin concentrations were within normal range and did not significantly change in either group.Conclusion: 4 weeks of moderate treadmill training had considerable effects on fitness level and mood in MS patients, both under normoxic and hypoxic conditions. Additionally, NO training improved Th17/Treg profile and HO training improved fatty acid oxidation during exercise. These effects could not be attributed to an increase of erythropoietin.Clinical Trial Registration: ClinicalTrials.gov; NCT02509897; http://www.clinicaltrials.go
Milk Products Containing Bioactive Tripeptides Have an Antihypertensive Effect in Double Transgenic Rats (dTGR) Harbouring Human Renin and Human Angiotensinogen Genes
Tripeptides isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP) act as ACE inhibitors in vitro. Double transgenic rats (dTGR) harbouring human renin and human angiotensinogen genes develop malignant hypertension due to increased angiotensin II formation. The present study was aimed to evaluate possible antihypertensive effect of IPP and VPP in this severe model. Four-week-old dTGR were randomized in three groups to receive: (1) water (control), (2) fermented milk containing IPP and VPP, and (3) IPP and VPP dissolved in water for three weeks. Fermented milk, but not peptides in water, attenuated the development of hypertension in dTGR by 19 mmHg versus the control group (P = .023). In vitro vascular function tests showed that high concentrations of the peptides evinced ACE inhibitory properties. In other hypertension related variables, no significant differences between the treatment groups were found. In conclusion, fermented milk product containing IPP and VPP prevents development of malignant hypertension in an animal model
Macrophages in homeostatic immune function
Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders
Metabolic, mental and immunological effects of normoxic and hypoxic training in multiple sclerosis patients: a pilot study
Background: Physical activity might attenuate inflammation and neurodegeneration in multiple sclerosis (MS). Erythropoietin, which is produced upon exposure to hypoxia, is thought to act as a neuroprotective agent in MS. Therefore, we studied the effects of intermittent hypoxic training on activity energy expenditure, maximal workload, serum erythropoietin, and immunophenotype focusing on regulatory and IL-17A-producing T cells. Methods: We assigned 34 relapsing-remitting MS patients within a randomized, single blind, parallel-group study to either normoxic (NO) or hypoxic (HO) treadmill training, both 3 times/week for 1 h over 4 weeks (Clinicaltrials.gov identifier: NCT02509897). Before and after training, activity energy expenditure (metabolic chamber), maximal workload (incremental treadmill test), walking ability, depressive symptoms (Beck Depression Inventory I), serum erythropoietin concentrations, and immunophenotype of peripheral blood mononuclear cells (PBMCs) were assessed. Results: Energy expenditure did not change due to training in both groups, but was rather fueled by fat than by carbohydrate oxidation after HO training (P = 0.002). Maximal workload increased by 40 Watt and 42 Watt in the NO and HO group, respectively (both P < 0.0001). Distance patients walked in 6 min increased by 25 m and 27 m in the NO and HO group, respectively (NO P = 0.02; HO P = 0.01). Beck Depression Inventory score markedly decreased in both groups (NO P = 0.03; HO P = 0.0003). NO training shifted Treg subpopulations by increasing and decreasing the frequency of CD39(+) and CD31(+) Tregs, respectively, and decreased IL-17A-producing CD4(+) cells. HO training provoked none of these immunological changes. Erythropoietin concentrations were within normal range and did not significantly change in either group. Conclusion: 4 weeks of moderate treadmill training had considerable effects on fitness level and mood in MS patients, both under normoxic and hypoxic conditions. Additionally, NO training improved Th17/Treg profile and HO training improved fatty acid oxidation during exercise. These effects could not be attributed to an increase of erythropoietin
Continuous blood glucose monitoring reveals enormous circadian variations in pregnant diabetic rats
Aim: Diabetes in pregnancy is a major burden with acute and long-term consequences. Its treatment requires adequate diagnosis and monitoring of therapy. Many experimental research on diabetes during pregnancy has been performed in rats. Recently, continuous blood glucose monitoring of non-pregnant diabetic rats revealed an increased circadian variability of blood glucose that made a single blood glucose measurement per day inappropriate to reflect glycemic status. Continuous blood glucose measurement has never been performed in pregnant rats. We wanted to perform continuous blood glucose monitoring in pregnant rats to decipher the influence of pregnancy on blood glucose in diabetic and normoglycemic status. Methods: We used the transgenic Tet29 diabetes rat model with an inducible knock down of the insulin receptor via RNA interference upon application of doxycycline (DOX) leading to insulin resistant type II diabetes. All Tet29 rats received a HD-XG telemetry implant (Data Sciences International, USA) that measured blood glucose and activity continuously. Rats were divided into four groups and blood glucose was monitored until end of pregnancy or the corresponding period: Tet29 + DOX (diabetic) non-pregnant, Tet29 + DOX (diabetic) pregnant, Tet29 (normoglycemic) non-pregnant, Tet29 (normoglycemic) pregnant. Results: Allanalyzed rats displayed a circadian variation in blood glucose concentration. Circadian variability was much more pronounced in pregnant diabetic rats than in normoglycemic pregnant rats. Pregnancy ameliorated variation in blood glucose in diabetic situation. Pregnancy continuously decreased blood glucose during normoglycemic pregnancy. Diabetic rats were less active than normoglycemic rats. We performed a calculation showing that application of continuous blood glucose measurement reduces Interpretation: Continuous blood glucose monitoring via a telemetry device in pregnant rats provides a more informative picture of the glycemic situation in comparison to single measurements. This could improve diagnosis and therapy of diabetes, decrease animal numbers within experimental settings, and add another physiological parameter (activity) to the analysis that could be helpful in testing therapeutic concepts targeting blood glucose levels and peripheral muscle function. We propose continuous glucose monitoring as a new tool for the evaluation of pregnant diabetic rats
Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease
Background In the recent years, a role of the immune system in Huntington’s
disease (HD) is increasingly recognized. Here we investigate the presence of T
cell activating auto-antibodies against angiotensin II type 1 receptors (AT1R)
in all stages of the disease as compared to healthy controls and patients
suffering from multiple sclerosis (MS) as a prototype neurologic autoimmune
disease. Results As compared to controls, MS patients show higher titers of
anti-AT1R antibodies, especially in individuals with active disease. In HD,
anti-AT1R antibodies are more frequent than in healthy controls or even MS and
occur in 37.9% of patients with relevant titers ≥ 20 U/ml. In a correlation
analysis with clinical parameters, the presence of AT1R antibodies in the sera
of HD individuals inversely correlated with the age of onset and positively
with the disease burden score as well as with smoking and infection.
Conclusions These data suggest a dysfunction of the adaptive immune system in
HD which may be triggered by different stimuli including autoimmune responses,
infection and possibly also smoking
Effects of empagliflozin and target-organ damage in a novel rodent model of heart failure induced by combined hypertension and diabetes
Type 2 diabetes mellitus and hypertension are two major risk factors leading to heart failure and cardiovascular damage. Lowering blood sugar by the sodium-glucose co-transporter 2 inhibitor empagliflozin provides cardiac protection. We established a new rat model that develops both inducible diabetes and genetic hypertension and investigated the effect of empagliflozin treatment to test the hypothesis if empagliflozin will be protective in a heart failure model which is not based on a primary vascular event. The transgenic Tet29 rat model for inducible diabetes was crossed with the mRen27 hypertensive rat to create a novel model for heart failure with two stressors. The diabetic, hypertensive heart failure rat (mRen27/tetO-shIR) were treated with empagliflozin (10 mg/kg/d) or vehicle for 4 weeks. Cardiovascular alterations were monitored by advanced speckle tracking echocardiography, gene expression analysis and immunohistological staining. The novel model with increased blood pressure und higher blood sugar levels had a reduced survival compared to controls. The rats develop heart failure with reduced ejection fraction. Empagliflozin lowered blood sugar levels compared to vehicle treated animals (182.3 ± 10.4 mg/dl vs. 359.4 ± 35.8 mg/dl) but not blood pressure (135.7 ± 10.3 mmHg vs. 128.2 ± 3.8 mmHg). The cardiac function was improved in all three global strains (global longitudinal strain − 8.5 ± 0.5% vs. − 5.5 ± 0.6%, global radial strain 20.4 ± 2.7% vs. 8.8 ± 1.1%, global circumferential strain − 11.0 ± 0.7% vs. − 7.6 ± 0.8%) and by increased ejection fraction (42.8 ± 4.0% vs. 28.2 ± 3.0%). In addition, infiltration of macrophages was decreased by treatment (22.4 ± 1.7 vs. 32.3 ± 2.3 per field of view), despite mortality was not improved. Empagliflozin showed beneficial effects on cardiovascular dysfunction. In this novel rat model of combined hypertension and diabetes, the improvement in systolic and diastolic function was not secondary to a reduction in left ventricular mass or through modulation of the afterload, since blood pressure was not changed. The mRen27/tetO-shIR strain should provide utility in separating blood sugar from blood pressure-related treatment effects
Propionic Acid Rescues High-Fat Diet Enhanced Immunopathology in Autoimmunity via Effects on Th17 Responses
High-fat diets (HFD) are linked to obesity and associated comorbidities and induce pathogenic T helper (Th) 17 cells while decreasing regulatory T cells (Treg). This pro-inflammatory environment also aggravates immunopathology in experimental autoimmune encephalomyelitis (EAE) as a prototype model of T cell mediated autoimmunity. The strong association of HFD to obesity as well as the increasing risk of autoimmunity in the Western world stresses the importance to identify compounds that counteract this metabolically induced pro-inflammatory state in humans. One prominent candidate is the short-chain fatty acid propionate (PA) that was recently identified as potent therapy in the autoimmune disease multiple sclerosis by enhancing Treg cell frequencies and functionality. Mice were fed a HFD rich lauric acid (LA) and treated either with water or PA during MOG35-55-EAE. We analyzed Treg and Th17 cell frequencies in different tissues, antigen-specific cell proliferation and cytokine secretion, investigated Treg cell functionality by suppression assays and IL-10 signaling blockade and employed Western blotting to investigate the involvement of p38-MAPK signaling. Finally, we performed an explorative study in obese and non-obese MS patients, investigating fecal PA concentrations as well as peripheral Th17 and Treg frequencies before and after 90 days of daily PA intake. As compared to controls, mice on a HFD displayed a more severe course of EAE with enhanced demyelination and immune cell infiltration in the spinal cord. PA treatment prevented this disease enhancing effect of HFD by inhibiting Th17 mediated inflammatory processes in the gut and the spleen. Blocking experiments and signaling studies revealed p38-MAPK and IL-10 signaling as important targets linking the beneficial effects of PA treatment and reduced inflammation due to enhanced Treg frequency and functionality. An explorative study in a small group of MS patients revealed reduced PA concentrations in fecal samples of obese MS patients compared to the non-obese group, coinciding with increased Th17 but decreased Treg cells in obese patients. Importantly, PA intake could restore the Treg-Th17 homeostasis. Our data thus identify Th17 responses as an important target for the beneficial effects of PA in HFD and obesity in addition to the recently identified potential of PA as a Treg inducing therapy in T cell mediated autoimmunity
- …