4 research outputs found
Changes in the midpalatal and pterygopalatine sutures induced by micro-implant-supported skeletal expander, analyzed with a novel 3D method based on CBCT imaging.
BackgroundMini-implant-assisted rapid palatal expansion (MARPE) appliances have been developed with the aim to enhance the orthopedic effect induced by rapid maxillary expansion (RME). Maxillary Skeletal Expander (MSE) is a particular type of MARPE appliance characterized by the presence of four mini-implants positioned in the posterior part of the palate with bi-cortical engagement. The aim of the present study is to evaluate the MSE effects on the midpalatal and pterygopalatine sutures in late adolescents, using high-resolution CBCT. Specific aims are to define the magnitude and sagittal parallelism of midpalatal suture opening, to measure the extent of transverse asymmetry of split, and to illustrate the possibility of splitting the pterygopalatine suture.MethodsFifteen subjects (mean age of 17.2 years; range, 13.9-26.2 years) were treated with MSE. Pre- and post-treatment CBCT exams were taken and superimposed. A novel methodology based on three new reference planes was utilized to analyze the sutural changes. Parameters were compared from pre- to post-treatment and between genders non-parametrically using the Wilcoxon sign rank test. For the frequency of openings in the lower part of the pterygopalatine suture, the Fisher's exact test was used.ResultsRegarding the magnitude of midpalatal suture opening, the split at anterior nasal spine (ANS) and at posterior nasal spine (PNS) was 4.8 and 4.3 mm, respectively. The amount of split at PNS was 90% of that at ANS, showing that the opening of the midpalatal suture was almost perfectly parallel antero-posteriorly. On average, one half of the anterior nasal spine (ANS) moved more than the contralateral one by 1.1 mm. Openings between the lateral and medial plates of the pterygoid process were detectable in 53% of the sutures (P < 0.05). No significant differences were found in the magnitude and frequency of suture opening between males and females. Correlation between age and suture opening was negligible (R 2 range, 0.3-4.2%).ConclusionsMidpalatal suture was successfully split by MSE in late adolescents, and the opening was almost perfectly parallel in a sagittal direction. Regarding the extent of transverse asymmetry of the split, on average one half of ANS moved more than the contralateral one by 1.1 mm. Pterygopalatine suture was split in its lower region by MSE, as the pyramidal process was pulled out from the pterygoid process. Patient gender and age had a negligible influence on suture opening for the age group considered in the study
Recommended from our members
Zygomaticomaxillary modifications in the horizontal plane induced by micro-implant-supported skeletal expander, analyzed with CBCT images
BackgroundMiniscrew-assisted rapid palatal expansion (MARPE) has been adopted in recent years to expand the maxilla in late adolescence and adult patients. Maxillary Skeletal Expander (MSE) is a device that exploits the principles of skeletal anchorage to transmit the expansion force directly to the maxillary bony structures and is characterized by the miniscrews' engagement of the palatal and nasal cortical bone layers. In the literature, it has been reported that the zygomatic buttress is a major constraint that hampers the lateral movement of maxilla, since maxilla is located medially to the zygomatic arches. The objective of the present study is to analyze the changes in the zygomatic bone, maxillary bone, and zygomatic arches and to localize the center of rotation for the zygomaticomaxillary complex in the horizontal plane after treatment with MSE, using high-resolution cone-beam computed tomography (CBCT) images.MethodsFifteen subjects with a mean age of 17.2 (± 4.2) years were treated with MSE. CBCT records were taken before and after miniscrew-assisted maxillary expansion; three linear and four angular parameters were identified in the axial zygomatic section (AZS) and were compared from pre-treatment to post-treatment using the Wilcoxon signed rank test.ResultsAnterior inter-maxillary distance increased by 2.8 mm, posterior inter-zygomatic distance by 2.4 mm, angle of the zygomatic process of the temporal bone by 1.7° and 2.1° (right and left side) (P < 0.01). Changes in posterior inter-temporal distance and zygomaticotemporal angle were negligible (P > 0.05).ConclusionsIn the horizontal plane, the maxillary and zygomatic bones and the whole zygomatic arch were significantly displaced in a lateral direction after treatment with MSE. The center of rotation for the zygomaticomaxillary complex was located near the proximal portion of the zygomatic process of the temporal bone, more posteriorly and more laterally than what has been reported in the literature for tooth-borne expanders. Bone bending takes place in the zygomatic process of the temporal bone during miniscrew-supported maxillary expansion
Zygomaticomaxillary modifications in the horizontal plane induced by micro-implant-supported skeletal expander, analyzed with CBCT images
Abstract Background Miniscrew-assisted rapid palatal expansion (MARPE) has been adopted in recent years to expand the maxilla in late adolescence and adult patients. Maxillary Skeletal Expander (MSE) is a device that exploits the principles of skeletal anchorage to transmit the expansion force directly to the maxillary bony structures and is characterized by the miniscrews’ engagement of the palatal and nasal cortical bone layers. In the literature, it has been reported that the zygomatic buttress is a major constraint that hampers the lateral movement of maxilla, since maxilla is located medially to the zygomatic arches. The objective of the present study is to analyze the changes in the zygomatic bone, maxillary bone, and zygomatic arches and to localize the center of rotation for the zygomaticomaxillary complex in the horizontal plane after treatment with MSE, using high-resolution cone-beam computed tomography (CBCT) images. Methods Fifteen subjects with a mean age of 17.2 (± 4.2) years were treated with MSE. CBCT records were taken before and after miniscrew-assisted maxillary expansion; three linear and four angular parameters were identified in the axial zygomatic section (AZS) and were compared from pre-treatment to post-treatment using the Wilcoxon signed rank test. Results Anterior inter-maxillary distance increased by 2.8 mm, posterior inter-zygomatic distance by 2.4 mm, angle of the zygomatic process of the temporal bone by 1.7° and 2.1° (right and left side) (P  0.05). Conclusions In the horizontal plane, the maxillary and zygomatic bones and the whole zygomatic arch were significantly displaced in a lateral direction after treatment with MSE. The center of rotation for the zygomaticomaxillary complex was located near the proximal portion of the zygomatic process of the temporal bone, more posteriorly and more laterally than what has been reported in the literature for tooth-borne expanders. Bone bending takes place in the zygomatic process of the temporal bone during miniscrew-supported maxillary expansion
Recommended from our members
Long-term effects of maxillary skeletal expander treatment on functional breathing.
OBJECTIVE: : To investigate the long-term effects of maxillary skeletal expander (MSE) treatment on functional breathing. OBJECTIVE: measures of breathing, the peak nasal inspiratory flow (PNIF), and peak oral inspiratory flow (POIF), and subjective measures of breathing, the visual analog scale (VAS) and nasal obstruction symptom evaluation (NOSE) survey, were used to investigate the long-term effects of MSE in functional breathing. Seventeen patients, mean age 19.4 ± 3.9 years treated at the UCLA Orthodontics Clinic were assessed on their functional breathing at 3 timepoints: pre-expansion (T0), post-expansion (T1), and post-orthodontic treatment (T2). RESULTS: : Immediately after expansion (T1), all the objective functional breathing values were significantly increased in comparison to T0 (P < 0.05). The VAS total, VAS right and VAS left were significantly lower at T1 in comparison to T0 (P < 0.05). At 26.8 ± 3.9 months after MSE expansion (T2), PNIF total, PNIF right, PNIF left, and POIF were significantly higher when compared to T0 (P < 0.05). Also, VAS total, VAS right and VAS left were significantly lower at T2 when compared to T0 (P < 0.05). Additionally, there was a positive correlation between PNIF and the magnitude of expansion at anterior nasal spine and zygomaticomaxillary point (ZMA). There was a positive correlation between total VAS and the magnitude of expansion at the ZMA. There were no significant changes for the NOSE subjective breathing measurement at all time comparisons. CONCLUSIONS: : Overall, MSE treatment produces an increased objective and subjective airway improvement that continues to remain stable in the long-term post expansion