18 research outputs found

    Insights on Ultrafiltration-Based Separation for the Purification and Quantification of Methotrexate in Nanocarriers

    Get PDF
    The evaluation of encapsulation efficiency is a regulatory requirement for the characterization of drug delivery systems. However, the difficulties in efficiently separating nanomedicines from the free drug may compromise the achievement of accurate determinations. Herein, ultrafiltration was exploited as a separative strategy towards the evaluation of methotrexate (MTX) encapsulation efficiency in nanostructured lipid carriers and polymeric nanoparticles. The effect of experimental conditions such as pH and the amount of surfactant present in the ultrafiltration media was addressed aiming at the selection of suitable conditions for the effective purification of nanocarriers. MTX-loaded nanoparticles were then submitted to ultrafiltration and the portions remaining in the upper compartment of the filtering device and in the ultrafiltrate were collected and analyzed by HPLC-UV using a reversed-phase (C18) monolithic column. A short centrifugation time (5 min) was suitable for establishing the amount of encapsulated MTX in nanostructured lipid carriers, based on the assumption that the free MTX concentration was the same in the upper compartment and in the ultrafiltrate. The defined conditions allowed the efficient separation of nanocarriers from the free drug, with recoveries of >85% even when nanoparticles were present in cell culture media and in pig skin surrogate from permeation assays.info:eu-repo/semantics/publishedVersio

    The effect of the electric field on lag phase, β-galactosidase production and plasmid stability of a recombinant Saccharomyces cerevisiae strain growing on lactose

    Get PDF
    Ethanol and β-galactosidase production from cheese whey may significantly contribute to minimise environmental problems while producing value from lowcost raw materials. In this work, the recombinant Saccharomyces cerevisiae NCYC869-A3/pVK1.1 flocculent strain expressing the lacA gene (coding for β-galactosidase) of Aspergillus niger under ADHI promoter and terminator was used. This strain shows high ethanol and β-galactosidase productivities when grown on lactose. Batch cultures were performed using SSlactose medium with 50 gL−1 lactose in a 2-L bioreactor under aerobic and microaerophilic conditions. Temperature was maintained at 30 °C and pH 4.0. In order to determine the effect of an electric field in the fermentation profile, titanium electrodes were placed inside the bioreactor and different electric field values (from 0.5 to 2 Vcm−1) were applied. For all experiments, β-galactosidase activity, biomass, protein, lactose, glucose, galactose and ethanol concentrations were measured. Finally, lag phase duration and specific growth rate were calculated. Significant changes in lag phase duration and biomass yield were found when using 2 Vcm−1. Results show that the electric field enhances the early stages of fermentation kinetics, thus indicating that its application may improve industrial fermentations’ productivity. The increase in electric field intensity led to plasmid instability thus decreasing β-galactosidase production.The authors gratefully acknowledge Fundacao para a Ciencia e a Tecnologia (Portugal) for the scholarships SFRH/BD/11230/2002 and SFRH/BDP/63831/2009 granted to authors I. Castro and C. Oliveira, respectively

    Technological trends, global market, and challenges of bio-ethanol production

    Get PDF
    Ethanol use as a fuel additive or directly as a fuel source has grown in popularity due to governmental regulations and in some cases economic incentives based on environmental concerns as well as a desire to reduce oil dependency. As a consequence, several countries are interested in developing their internal market for use of this biofuel. Currently, almost all bio-ethanol is produced from grain or sugarcane. However, as this kind of feedstock is essentially food, other efficient and economically viable technologies for ethanol production have been evaluated. This article reviews some current and promising technologies for ethanol production considering aspects related to the raw materials, processes, and engineered strains development. The main producer and consumer nations and future perspectives for the ethanol market are also presented. Finally, technological trends to expand this market are discussed focusing on promising strategies like the use of microalgae and continuous systems with immobilized cells

    Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. Results: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. Conclusions: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression

    VEGFR2 Translocates to the Nucleus to Regulate Its Own Transcription

    Get PDF
    Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is the major mediator of the angiogenic effects of VEGF. In addition to its well known role as a membrane receptor that activates multiple signaling pathways, VEGFR2 also has a nuclear localization. However, what VEGFR2 does in the nucleus is still unknown. In the present report we show that, in endothelial cells, nuclear VEGFR2 interacts with several nuclear proteins, including the Sp1, a transcription factor that has been implicated in the regulation of genes needed for angiogenesis. By in vivo chromatin immunoprecipitation (ChIP) assays, we found that VEGFR2 binds to the Sp1-responsive region of the VEGFR2 proximal promoter. These results were confirmed by EMSA assays, using the same region of the VEGFR2 promoter. Importantly, we show that the VEGFR2 DNA binding is directly linked to the transcriptional activation of the VEGFR2 promoter. By reporter assays, we found that the region between -300/-116 relative to the transcription start site is essential to confer VEGFR2-dependent transcriptional activity. It was previously described that nuclear translocation of the VEGFR2 is dependent on its activation by VEGF. In agreement, we observed that the binding of VEGFR2 to DNA requires VEGF activation, being blocked by Bevacizumab and Sunitinib, two anti-angiogenic agents that inhibit VEGFR2 activation. Our findings demonstrate a new mechanism by which VEGFR2 activates its own promoter that could be involved in amplifying the angiogenic response

    Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    Get PDF
    Background: Saccharomyces cerevisiae (Baker’s yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results: Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions: Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.Fundação para a Ciência e TecnologiaThe authors wish to thank Adega Cooperativa da Bairrada, Cantanhede, Portugal, for providing the commercial strains

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    Lab-on-valve automated and miniaturized assessment of nanoparticle concentration based on light-scattering

    No full text
    Nanoparticles (NPs) concentration directly impacts the dose delivered to target tissues by nanocarriers. The evaluation of this parameter is required during NPs developmental and quality control stages, for setting dose−response correlations and for evaluating the reproduci bility of the manufacturing process. Still, faster and simpler procedures, dismissing skilled operators and post-analysis conversions are needed to quantify NPs for research and quality control operations, and to support result validation. Herein, a miniaturized automated ensemble method to measure NPs concentration was established under the lab-on-valve (LOV) mesofluidic platform. Automatic NPs sampling and delivery to the LOV detection unit were set by flow programming. NPs concentration measurements were based on the decrease in the light transmitted to the detector due to the light scattered by NPs when passing through the optical path. Each analysis was accomplished in 2 min, rendering a determination throughput of 30 h−1 (6 samples h−1 for n = 5) and only requiring 30 μL (≈0.03 g) of NPs suspension. Measurements were performed on polymeric NPs, as these represent one of the major classes of NPs under development for drug delivery aims. Determinations for polystyrene NPs (of 100, 200, and 500 nm) and for NPs made of PEGylated poly-D,L-lactide-co glycolide (PEG−PLGA, a biocompatible FDA-approved polymer) were accomplished within 108 −1012 particles mL−1 range, depending on the NPs size and composition. NPs size and concentration were maintained during analysis, as verified for NPs eluted from the LOV by particle tracking analysis (PTA). Moreover, concentration measurements for PEG−PLGA NPs loaded with an anti-inflammatory drug, methotrexate (MTX), after their incubation in simulated gastric and intestinal fluids were successfully achieved (recovery values of 102−115%, as confirmed by PTA), showing the suitability of the proposed method to support the development of polymeric NPs targeting intestinal delivery.info:eu-repo/semantics/publishedVersio
    corecore