48 research outputs found

    Búsqueda y caracterización de virus bacteriófagos frente a Xylella fastidiosa

    Get PDF
    Xylella fastidiosa es una bacteria Gram-negativa de la familia Xanthomonadaceae que habita el xilema de la planta hospedadora, donde se multiplica y puede llegar a obstruir el flujo de savia bruta, pudiendo llegar a provocar la muerte de la planta. Tiene un modo de vida dual, ya que también habita en el tracto digestivo anterior de insectos chupadores de xilema que actúan como vectores. Afecta a un elevado número de especies vegetales, muchas de ellas de gran interés agrícola y medioambienta

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336

    The Phenotype-Fitness Map in Experimental Evolution of Phages

    Get PDF
    Evolutionary biologists commonly interpret adaptations of organisms by reference to a phenotype-fitness map, a model of how different states of a phenotype affect fitness. Notwithstanding the popularity of this approach, it remains difficult to directly test these mappings, both because the map often describes only a small subset of phenotypes contributing to total fitness and because direct measures of fitness are difficult to obtain and compare to the map. Both limitations can be overcome for bacterial viruses (phages) grown in the experimental condition of unlimited hosts. A complete accounting of fitness requires 3 easily measured phenotypes, and total fitness is also directly measurable for arbitrary genotypes. Yet despite the presumed transparency of this system, directly estimated fitnesses often differ from fitnesses calculated from the phenotype-fitness map. This study attempts to resolve these discrepancies, both by developing a more exact analytical phenotype-fitness map and by exploring the empirical foundations of direct fitness estimates. We derive an equation (the phenotype-fitness map) for exponential phage growth that allows an arbitrary distribution of lysis times and burst sizes. We also show that direct estimates of fitness are, in many cases, plausibly in error because the population has not attained stable age distribution and thus violates the model underlying the phenotype-fitness map. In conjunction with data provided here, the new understanding appears to resolve a discrepancy between the reported fitness of phage T7 and the substantially lower value calculated from its phenotype-fitness map

    From Molecular Genetics to Phylodynamics: Evolutionary Relevance of Mutation Rates Across Viruses

    Get PDF
    Although evolution is a multifactorial process, theory posits that the speed of molecular evolution should be directly determined by the rate at which spontaneous mutations appear. To what extent these two biochemical and population-scale processes are related in nature, however, is largely unknown. Viruses are an ideal system for addressing this question because their evolution is fast enough to be observed in real time, and experimentally-determined mutation rates are abundant. This article provides statistically supported evidence that the mutation rate determines molecular evolution across all types of viruses. Properties of the viral genome such as its size and chemical composition are identified as major determinants of these rates. Furthermore, a quantitative analysis reveals that, as expected, evolution rates increase linearly with mutation rates for slowly mutating viruses. However, this relationship plateaus for fast mutating viruses. A model is proposed in which deleterious mutations impose an evolutionary speed limit and set an extinction threshold in nature. The model is consistent with data from replication kinetics, selection strength and chemical mutagenesis studies

    Predictability of evolutionary trajectories in fitness landscapes

    Get PDF
    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.Comment: 14 pages, 7 figure

    Toward standardization of BK virus monitoring: evaluation of the BK virus R-gene kit for quantification of BK viral load in urine, whole-blood, and plasma specimens.

    Get PDF
    Screening of BK virus (BKV) replication is recommended to identify patients at increased risk of BKV-associated diseases. However, the heterogeneity of molecular techniques hinders the establishment of universal guidelines for BKV monitoring. Here we aimed to compare the performance of the CE-marked BK virus R-gene kit (R-gene) to the performance of our in-house assay for quantification of BKV DNA loads (BKVL). A 12-specimen panel from the Quality Control for Molecular Diagnostics (QCMD) organization, 163 urine samples, and 88 paired specimens of plasma and whole blood (WB) from transplant recipients were tested. Both the R-gene and in-house assays showed a good correlation within the QCMD panel (r = 0.995 and r = 0.989, respectively). BKVL were highly correlated between assays, although positive biases were observed with the in-house assay in analysis of urine (0.72 ± 0.83 log10 copies/ml), plasma (1.17 ± 0.63 log10 copies/ml), and WB (1.28 ± 0.37 log10 copies/ml). Recalibration with a common calibrator significantly reduced the bias in comparisons between assays. In contrast, BKVL was underestimated with the in-house PCR in eight samples containing BKV genotype II, presenting point mutations at primer-annealing sites. Using the R-gene assay, plasma and WB specimens were found to be equally suitable for quantification of BKVL, as indicated by the high correlation coefficient (r = 0.965, P < 0.0001). In conclusion, the R-gene assay demonstrated reliable performance and higher accuracy than the in-house assay for quantification of BKVL in urine and blood specimens. Screening of BKV replication by a well-validated commercial kit may enable clinical laboratories to assess viral loads with greater reproducibility and precision.comparative studyevaluation studiesjournal articleresearch support, non-u.s. gov't2014 Dec2014 10 08importe

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency &gt;3%, and were also present in the mutant library, had fitness levels that were &gt;40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Ongoing Phenotypic and Genomic Changes in Experimental Coevolution of RNA Bacteriophage Qβ and Escherichia coli

    Get PDF
    According to the Red Queen hypothesis or arms race dynamics, coevolution drives continuous adaptation and counter-adaptation. Experimental models under simplified environments consisting of bacteria and bacteriophages have been used to analyze the ongoing process of coevolution, but the analysis of both parasites and their hosts in ongoing adaptation and counter-adaptation remained to be performed at the levels of population dynamics and molecular evolution to understand how the phenotypes and genotypes of coevolving parasite–host pairs change through the arms race. Copropagation experiments with Escherichia coli and the lytic RNA bacteriophage Qβ in a spatially unstructured environment revealed coexistence for 54 days (equivalent to 163–165 replication generations of Qβ) and fitness analysis indicated that they were in an arms race. E. coli first adapted by developing partial resistance to infection and later increasing specific growth rate. The phage counter-adapted by improving release efficiency with a change in host specificity and decrease in virulence. Whole-genome analysis indicated that the phage accumulated 7.5 mutations, mainly in the A2 gene, 3.4-fold faster than in Qβ propagated alone. E. coli showed fixation of two mutations (in traQ and csdA) faster than in sole E. coli experimental evolution. These observations suggest that the virus and its host can coexist in an evolutionary arms race, despite a difference in genome mutability (i.e., mutations per genome per replication) of approximately one to three orders of magnitude

    Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus

    Get PDF
    Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host
    corecore