25 research outputs found

    Dissociative recombination measurements of HCl+ using an ion storage ring

    Get PDF
    We have measured dissociative recombination of HCl+ with electrons using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T=10 to 5000 K. We show that the previously used HCl+ DR data underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and overestimate it by a factor of 3.0 at T=300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013

    Exploring high-energy doubly excited states of NH by dissociative recombination of NH+

    Get PDF
    We have investigated electron capture by NH+ resulting in dissociative recombination (DR). The impact energies studied of ~4–12 eV extend over the range below the two lowest predicted NH+ dissociative states in the Franck–Condon (FC) region of the ion. Our focus has been on the final state populations of the resulting N and H atoms. The neutral DR fragments are detected downstream of a merged electron and ion beam interaction zone in the TSR storage ring, which is located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. Transverse fragment distances were measured on a recently developed high count-rate imaging detector. The distance distributions enabled a detailed tracking of the final state populations as a function of the electron collision energy. These can be correlated with doubly excited neutral states in the FC region of the ion. At low electron energy of ~5 eV, the atomic product final levels are nitrogen Rydberg states together with ground-state hydrogen. In a small electron energy interval near 7 eV, a significant part of the final state population forms hydrogen Rydberg atoms with nitrogen atoms in the first excited (2D\rm ^2D) term, showing the effect of Rydberg doubly excited states below the predicted 2 2Π ionic potential. The distance distributions above ~10 eV are compatible with nitrogen Rydberg states correlating to the doubly excited Rydberg state manifold below the ionic 2 4Σ− level

    Stochastic reliable control of a class of uncertain time-delay systems with unknown nonlinearities

    Get PDF
    Copyright [2001] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper investigates the robust reliable control problem for a class of nonlinear time-delay stochastic systems. The system under study involves stochastics, state time-delay, parameter uncertainties, possible actuator failures and unknown nonlinear disturbances, which are often encountered in practice and the sources of instability. Our attention is focused on the design of linear state feedback memoryless controllers such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains stochastically exponentially stable in mean square, independent of the time delay. Sufficient conditions are proposed to guarantee the desired robust reliable exponential stability despite possible actuator failures, which are in terms of the solutions to algebraic Riccati inequalities. An illustrative example is exploited to demonstrate the applicability of the proposed design approac

    An artifact based approach to the accounting recognition of assets, particularly intangible assets

    Get PDF
    The International Accounting Standards Board is currently reviewing its conceptual framework and, as regards assets, the epistemological focus is upon revisions to the definition of an asset. The asset recognition criteria presented in this paper break free from this narrow definitional perspective to offer an alternative view based on the recognition of artifacts and the related notion of separability

    Photoionization and fragmentation of H3O+\mathrm{H_{3}O^{+}} under XUV irradiation

    No full text
    The photolysis of the hydronium cation H3O+ has been studied at the extreme ultraviolet wavelengths of 35.56±0.24 nm (34.87±0.24 eV) and 21.85±0.17 nm (56.74±0.44 eV) using a crossed ion-photon beam setup at the free-electron laser FLASH. Coincidence photoelectron and photofragment spectroscopy was performed at 21.85 nm, where both inner and outer valence ionization are allowed, and revealed that the XUV photolysis of H3O+ is by far dominated by ionization of outer valence electrons forming the 1A1 and 2E states of the dication H3O2+. The dications were found to dissociate into the channels H2O++H+ (72±4%), OH0+2H+ (18±6%), and OH++H++H0 (10±1%). A kinematic analysis of the H2O++H+ channel after photoabsorption at 35.56 nm (where only outer valence ionization is possible) showed dissociation into excited states of the water radical ion, where the 1A1 state breaks up into the linear A˜2A1 state of H2O+ and the 2E state decays into the strongly bent B˜2B2 state. Finally, from the 2E state of H3O2+, dissociation into OH0(X2Π)+2H+ was identified to occur with a near linear dissociation geometry

    Dissociative Recombination Measurements of NH<sup>+</sup> Using an Ion Storage Ring

    No full text
    We have investigated dissociative recombination (DR) of NH+ with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present our measured absolute merged-beams recombination rate coefficient for collision energies from 0 to 12 eV. From these data, we have extracted a cross section, which we have transformed to a plasma rate coefficient for the collisional plasma temperature range from Tpl = 10 to 18,000 K. We show that the NH+ DR rate coefficient data in current astrochemical models are underestimated by up to a factor of approximately nine. Our new data will result in predicted NH+ abundances lower than those calculated by present models. This is in agreement with the sensitivity limits of all observations attempting to detect NH+ in interstellar clouds
    corecore