22 research outputs found
Bulges of disk galaxies at intermediate redshifts.II. Nuclear, disk and global colours in the Groth Strip
We analyse colours of the nuclear regions of intermediate redshift disk
galaxies, with the aim of obtaining empirical information of relative ages of
bulges and disks at 0.1 < z < 1.3. We work with an apparent-diameter limited
parent sample of 248 galaxies from the HST Groth Strip Survey. We apply a
conservative criterion to identify bulges and potential precursors of
present-day bulges based on nuclear surface brightness excess above the
exponential profile of the outer parts. We measure bulge colours on wedge
profiles opening on the semi-minor axis, and compare them to disk, and global
galaxy colours. For 60% of galaxies with bulges, the rest-frame nuclear colour
distribution shows a red sequence that is well fit by passive evolution models
of various ages, while the remainder 40% scatters towards bluer colours. In
contrast, galaxies without central brightness excess show typical colours of
star forming population and lack a red sequence. We also see that, as in the
local Universe, most of the minor axis colour profiles are negative (bluer
outward), and fairly gentle, indicating that nuclear colours are not distinctly
different from disk colours. This is corroborated when comparing nuclear,
global and disk colours: these show strong correlations, for any value of the
central brightness prominence of the bulge. Comparison with synthetic models of
red sequence bulge colours suggests that such red bulges have stopped forming
stars at an epoch earlier than ~ 1 Gyr before the observation. The correlation
between nuclear and disk colours and the small colour gradients hints at an
intertwined star formation history for bulges and disks: probably, most of our
red bulges formed in a process in which truncation of star formation in the
bulge did not destroy the disk.Comment: 13 pages, 9 figures, 5 tables. Accepted for publication in A&
Galactic bulges from Hubble Space Telescope NICMOS observations: the lack of r^{1/4} bulges
We use HST near-infrared imaging to explore the shapes of the surface
brightness profiles of bulges of S0-Sbc galaxies at high resolution. Modeling
extends to the outer bulge via bulge-disk decompositions of combined HST -
ground based profiles. Compact, central unresolved components similar to those
reported by others are found in ~84% of the sample. We also detect a moderate
frequency (~34%) of nuclear components with exponential profiles which may be
disks or bars. Adopting the S\'ersic r^{1/n} functional form for the bulge,
none of the bulges have an r^{1/4} behaviour; derived S\'ersic shape-indices
are = 1.7 \pm 0.7. For the same sample, fits to NIR ground-based profiles
yield S\'ersic indices up to n = 4-6. The high- of ground-based profiles are
a result of nuclear point sources blending with the bulge extended light due to
seeing. The low S\'ersic indices are not expected from merger violent
relaxation, and argue against significant merger growth for most bulges.Comment: 4 pages, 3 figures, accepted for the Astrophysical Journal Letter
The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation
© 2023 The Author(s) . Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366959\,nm at , or two shorter ranges at . After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for 3 million stars and detailed abundances for million brighter field and open-cluster stars; (ii) survey million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at . Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Peer reviewe
The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation
WEAVE, the new wide-field, massively multiplexed spectroscopic survey
facility for the William Herschel Telescope, will see first light in late 2022.
WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a
nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini'
integral field units (IFUs), and a single large IFU. These fibre systems feed a
dual-beam spectrograph covering the wavelength range 366959\,nm at
, or two shorter ranges at . After summarising the
design and implementation of WEAVE and its data systems, we present the
organisation, science drivers and design of a five- to seven-year programme of
eight individual surveys to: (i) study our Galaxy's origins by completing
Gaia's phase-space information, providing metallicities to its limiting
magnitude for 3 million stars and detailed abundances for
million brighter field and open-cluster stars; (ii) survey million
Galactic-plane OBA stars, young stellar objects and nearby gas to understand
the evolution of young stars and their environments; (iii) perform an extensive
spectral survey of white dwarfs; (iv) survey
neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and
kinematics of stellar populations and ionised gas in cluster galaxies;
(vi) survey stellar populations and kinematics in field galaxies
at ; (vii) study the cosmic evolution of accretion
and star formation using million spectra of LOFAR-selected radio sources;
(viii) trace structures using intergalactic/circumgalactic gas at .
Finally, we describe the WEAVE Operational Rehearsals using the WEAVE
Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA
The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation
Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de AstrofĂsica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, RĂ©gion Ăle-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut fĂŒr Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ⌠5000, or two shorter ranges at R ⌠20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ⌠3 million stars and detailed abundances for ⌠1.5 million brighter field and open-cluster stars; (ii) survey ⌠0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey âŒÂ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation
WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366â959\,nm at RâŒ5000, or two shorter ranges at RâŒ20000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for âŒ3 million stars and detailed abundances for âŒ1.5 million brighter field and open-cluster stars; (ii) survey âŒ0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey âŒ400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator