42 research outputs found

    Structure–Activity Relationship of Oligomeric Flavan-3-ols: Importance of the Upper-Unit B-ring Hydroxyl Groups in the Dimeric Structure for Strong Activities

    No full text
    Proanthocyanidins, which are composed of oligomeric flavan-3-ol units, are contained in various foodstuffs (e.g., fruits, vegetables, and drinks) and are strongly biologically active compounds. We investigated which element of the proanthocyanidin structure is primarily responsible for this functionality. In this study, we elucidate the importance of the upper-unit of 4–8 condensed dimeric flavan-3-ols for antimicrobial activity against Saccharomyces cerevisiae (S. cerevisiae) and cervical epithelioid carcinoma cell line HeLa S3 proliferation inhibitory activity. To clarify the important constituent unit of proanthocyanidin, we synthesized four dimeric compounds, (−)-epigallocatechin-[4,8]-(+)-catechin, (−)-epigallocatechin-[4,8]-(−)-epigallocatechin, (−)-epigallocatechin-[4,8]-(−)-epigallocatechin-3-O-gallate, and (+)-catechin-[4,8]-(−)-epigallocatechin and performed structure–activity relationship (SAR) studies. In addition to antimicrobial activity against S. cerevisiae and proliferation inhibitory activity on HeLa S3 cells, the correlation of 2,2-diphenyl-l-picrylhydrazyl radical scavenging activity with the number of phenolic hydroxyl groups was low. On the basis of the results of our SAR studies, we concluded that B-ring hydroxyl groups of the upper-unit of the dimer are crucially important for strong and effective activity

    Evaluation of Aminopolycarboxylate Chelators for Whole-Body Clearance of Free Ac: A Feasibility Study to Reduce Unexpected Radiation Exposure during Targeted Alpha Therapy.

    No full text
    Actinium-225 (Ac) is a promising radionuclide used in targeted alpha therapy (TAT). Although Ac labeling of bifunctional chelating ligands is effective, previous in vivo studies reported that free Ac can be released from the drugs and that such free Ac is predominantly accumulated in the liver and could cause unexpected toxicity. To accelerate the clinical development of Ac TAT with a variety of drugs, preparing methods to deal with any unexpected toxicity would be valuable. The aim of this study was to evaluate the feasibility of various chelators for reducing and excreting free Ac and compare their chemical structures. Nine candidate chelators (D-penicillamine, dimercaprol, Ca-DTPA, Ca-EDTA, CyDTA, GEDTA TTHA, Ca-TTHA, and DO3A) were evaluated in vitro and in vivo. The biodistribution and dosimetry of free Ac were examined in mice before an in vivo chelating study. The liver exhibited pronounced Ac uptake, with an estimated human absorbed dose of 4.76 Sv/MBq. Aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, significantly reduced Ac retention in the liver (22% and 30%, respectively). Significant Ac reductions were observed in the heart and remainder of the body with both Ca-DTPA and Ca-TTHA, and in the lung, kidney, and spleen with Ca-TTHA. In vitro interaction analysis supported the in vivo reduction ability of Ca-DTPA and Ca-TTHA. In conclusion, aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, were effective for whole-body clearance of free Ac. This feasibility study provides useful information for reducing undesirable radiation exposure from free Ac

    Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells

    No full text
    <div><p>Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited <i>in vitro</i> myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a dissociated monolayer and feeder-free culture system have the potential to generate oligodendrocyte progenitor cells and mature oligodendrocytes <i>in vitro</i> and <i>in vivo</i>. This culture method could be applied to prepare large amounts of oligodendrocyte progenitor cells and mature oligodendrocytes in a relatively short amount of time.</p></div

    Application of a Combination of a Knowledge-Based Algorithm and 2-Stage Screening to Hypothesis-Free Genomic Data on Irinotecan-Treated Patients for Identification of a Candidate Single Nucleotide Polymorphism Related to an Adverse Effect

    No full text
    <div><p>Interindividual variation in a drug response among patients is known to cause serious problems in medicine. Genomic information has been proposed as the basis for “personalized” health care. The genome-wide association study (GWAS) is a powerful technique for examining single nucleotide polymorphisms (SNPs) and their relationship with drug response variation; however, when using only GWAS, it often happens that no useful SNPs are identified due to multiple testing problems. Therefore, in a previous study, we proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying SNPs. In the present study, we applied this method to a pharmacogenomics study where 109,365 SNPs were genotyped using Illumina Human-1 BeadChip in 168 cancer patients treated with irinotecan chemotherapy. We identified the SNP rs9351963 in potassium voltage-gated channel subfamily KQT member 5 (<i>KCNQ5</i>) as a candidate factor related to incidence of irinotecan-induced diarrhea. The <i>p</i> value for rs9351963 was 3.31×10<sup>−5</sup> in Fisher's exact test and 0.0289 in the permutation test (when multiple testing problems were corrected). Additionally, rs9351963 was clearly superior to the clinical parameters and the model involving rs9351963 showed sensitivity of 77.8% and specificity of 57.6% in the evaluation by means of logistic regression. Recent studies showed that <i>KCNQ4</i> and <i>KCNQ5</i> genes encode members of the M channel expressed in gastrointestinal smooth muscle and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 in <i>KCNQ5</i> is a possible predictive factor of incidence of diarrhea in cancer patients treated with irinotecan chemotherapy and for selecting chemotherapy regimens, such as irinotecan alone or a combination of irinotecan with a KCNQ5 opener. Nonetheless, clinical importance of rs9351963 should be further elucidated.</p></div
    corecore