842 research outputs found

    Nuclear Electric Propulsion Technology Panel findings and recommendations

    Get PDF
    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program

    Blazing the trailway: Nuclear electric propulsion and its technology program plans

    Get PDF
    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered

    Finite element analysis of thermal distortion effects on optical performance of solar dynamic concentrator for Space Station Freedom

    Get PDF
    An analysis was performed to predict the thermal distortion of the solar dynamic concentrator for Space Station Freedom in low earth orbit and to evaluate the effects of that thermal distortion on concentrator on-orbit performance. The analysis required substructural finite element modeling of critical concentrator structural subsystems, structural finite element modeling of the concentrator, mapping of thermal loading onto the structural finite element model, and the creation of specialized postprocessors to assist in interpreting results. Concentrator temperature distributions and thermally induced displacements and slope errors and the resulting receiver flux distribution profiles are discussed. Results determined for a typical orbit indicate that concentrator facet rotations are less than 0.2 mrad and that the change in facet radius due to thermal flattening is less than 5 percent. The predicted power loss due to thermal distortion effects is less than 0.3 percent. As a consequence the thermal distortions of the solar dynamic concentrator in low earth orbit will have a negligible effect on the flux distribution profiles within the receiver

    Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    Get PDF
    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications

    Human rights and the effluxion of time; Canada's Chinese immigration act as illustrative of the need for judicial remedies for human rights violations of the distant past

    Get PDF
    In the post-World War II era, the concept that all humans possess certain fundamental rights has achieved widespread acceptance. While no geographic limitations are acknowledged to the universality of human rights and the availability of remedies for the violation of those rights, temporal limitations seem to persist. That is, even very serious human rights violations of the distant past have often failed to attract remedies, particularly judicial remedies. The result can be lingering societal discontent. One example has been the case of Chinese immigration Canada who for many decades were required to pay a "head tax" and were for a further period banned altogether. An examination of the history of Canada's Chinese Immigration Act provides evidence of the need for courts to be able to effectively consider and, where appropriate, provide remedies for human rights violations of the distant past. Recommended changes that would facilitate this include: recognition that at least some human rights exist independently of the legislative instruments that have been created to protect them, and can be given judicial effect without recourse to those legislative instruments; recognition that the policy grounds underpinning judicial remediation of human rights violations are essentially the same as those underpinning judicial remediation of criminal offences; and development of a reasoned approach by which to distinguish between those cases for which the courts should provide remedies and those for which they should not

    Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    Get PDF
    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005

    Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    Get PDF
    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g (Earth's gravity), and the emergence of face-centered-cubic (FCC) crystals late in the coarsening process (as small crystallites lost particles to the slow ripening of large crystallites). Significant quantitative findings from the microgravity experiments have been developed describing complex interactions among crystallites during the growth process, as concentration fields overlap in the surrounding disordered phase. Time-resolved Bragg scattering under microgravity captures one effect of these interactions quite conclusively for the sample at a volume fraction of 0.528. From the earliest time until the sample is almost fully crystalline, the size and overall crystallinity grow monotonically, but the number of crystallites per unit volume (number density) falls. Apparently nucleation is slower than the loss of crystallites because of the transfer of particles from small to large crystals. Thus, coarsening occurs simultaneously with growth, rather than following the completion of nucleation and growth as is generally assumed. In the same sample, an interesting signature appears in the apparent number density of crystallites and the volume fraction within the crystallites shortly before full crystallinity is reached. A brief upturn in both indicates the creation of more domains of the size of the average crystallite simultaneous with the compression of the crystallites. Only the emergence of dendritic arms offers a reasonable explanation. The arms would be "seen" by the light scattering as separate domains whose smaller radii of curvature would compress the interior phase. In fiscal year 1999, numerous papers, a doctoral dissertation, and the PHaSE final report were produced. Although this flight project has been completed, plans are in place for a follow-on colloid experiment by Chaikin and Russel that employs a light microscope within Glenn's Fluids and Combustion Facility on the International Space Station. PHaSE is providing us with a deeper understanding of the nure of phase transitions. The knowledge derived has added to the understanding of condensed matter. In addition, the burgeoning study of the dynamics of colloidal self-assembly may lead to the development of a range of photonic materials that control the desirable properties of light. Thus, applications of ordered colloidal structures include not only ultrastructure ceramics, but also photonic crystals and photothermal nanosecond light-switching devices. Industries dealing with semiconductors, electro-optics, ceramics, and composites stand to benefit from such advancements

    Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    Get PDF
    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002

    Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    Get PDF
    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided

    Nuclear electric propulsion systems overview

    Get PDF
    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda
    corecore