71 research outputs found

    Purification of a chymotrypsin-like enzyme present on adult Schistosoma mansoni worms from infected mice and its characterization as a host carboxylesterase

    Get PDF
    A serine protease-like enzyme found in detergent extracts of Schistosoma mansoni adult worms perfused from infected mice has been purified from mouse blood and further characterized. The enzyme is approximately 85 kDa and hydrolyses N-acetyl-DL-phenylalanine β-naphthyl–ester, a chromogenic substrate for chymotrypsin-like enzymes. The enzyme from S. mansoni worms appears to be antigenically and enzymatically similar to a molecule that is present in normal mouse blood and so is seemingly host-derived. The enzyme was partially purified by depleting normal mouse serum of albumin using sodium chloride and cold ethanol, followed by repeated rounds of purification by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified material was subjected to tandem mass spectrometry and its derived peptides found to belong to mouse carboxylesterase 1C. Its ability to hydrolyse α- or β-naphthyl acetates, which are general esterase substrates, has been confirmed. A similar carboxylesterase was purified and characterized from rat blood. Additional evidence to support identification of the enzyme as a carboxylesterase has been provided. Possible roles of the enzyme in the mouse host–parasite relationship could be to ease the passage of worms through the host's blood vessels and/or in immune evasion

    Schistosoma mansoni cercarial elastase (SmCE): differences in immunogenic properties of native and recombinant forms

    Get PDF
    The Schistosoma mansoni cercarial elastase (SmCE) has previously been shown to be poorly immunogenic in mice. However, a minority of mice were able to produce antibodies against SmCE after multiple immunizations with crude pre- parations containing the enzyme. These mice were partially protected against challenge infections of S. mansoni. In the present study, we show that in contrast to the poor immunogenicity of the enzymatically active native form of SmCE derived from a crude preparation (cercarial transformation fluid), immunization of CBA/Ca mice with two enzymatically inactive forms, namely purified native SmCE or a recombinant SmCE fused to recombinant Schistosoma japonicum gluta- thione S-transferase (rSmCE-SjGST), after adsorption onto aluminum hydroxide adjuvant, induced specific anti-SmCE immunoglobulin G (IgG) in all mice within 2 weeks of the second immunization. The IgG antibody response to rSmCE- SjGST was mainly of the IgG1 subclass. These results suggest that inactive forms of the antigen could be used to obtain the optimum immunogenic effects as a vaccine candidate against schistosomiasis. Mice immunized with the rSmCE- SjGST on alum had smaller mean worm burdens and lower tissue egg counts when compared with adjuvant alone- and recombinant SjGST-injected controls. The native SmCE was antigenically cross-reactive with homologous enzymes of Schistosoma haematobium and Schistosoma margrebowiei

    Failure of in vitro-cultured schistosomes to produce eggs : how does the parasite meet its needs for host-derived cytokines such as TGF-β?

    Get PDF
    When adult schistosome worm pairs are transferred from experimental hosts to in vitro culture they cease producing viable eggs within a few days. Female worms in unisexual infections fail to mature, and when mature adult females are separated from male partners they regress sexually. Worms cultured from the larval stage are also permanently reproductively defective. The cytokine transforming growth factor beta derived from the mammalian host is considered important in stimulating schistosome female worm maturation and maintenance of fecundity. The means by which schistosomes acquire TGF-β have not been elucidated, but direct uptake in vivo seems unlikely as the concentration of free, biologically active cytokine in host blood is very low. Here we review the complexities of schistosome development and male–female interactions, and we speculate about two possibilities on how worms obtain the TGF-β they are assumed to need: (i) worms may have mechanisms to free active cytokine from the latency-inducing complex of proteins in which it is associated, and/or (ii) they may obtain the cytokine from alpha 2-macroglobulin, a blood-borne protease inhibitor to which TGF-β can bind. These ideas are experimentally testable

    Serodiagnosis of Schistosoma mansoni infections in an endemic area of Burkina Faso: performance of several immunological tests with different parasite antigens.

    No full text
    The performance of indirect haemagglutination assays (IHA), enzyme-linked immunosorbent assays (ELISA) and indirect immunofluorescent antibody tests (IFAT) were compared with 450 sera from a Schistosoma mansoni-endemic area in Burkina Faso. All participants in this survey provided at least one sample each of stool, urine and serum. From those with an egg-negative Kato-Katz thick smear, a second stool sample was examined. IHA was based on either extracts of adult S. mansoni worms (SmIHA) or S. japonicum egg antigen (SjIHA). For ELISA, three antigen preparations were used, namely: (i) soluble S. mansoni adult worm antigens (SWAP); (ii) soluble S. mansoni egg antigens (SEA); and (iii) a cationic exchange fraction of S. mansoni eggs (CEF6). IFAT was performed with S. mansoni male worm sections. Among the egg-excretors, the sensitivity of ELISA was high and egg antigens performed slightly better (SEA, 96%; CEF6, 97%) than worm antigen (94%). Sensitivity of IHA was satisfactory with homologous (Sm, >85%), but not heterologous (Sj, 56%) parasite antigen. In IFAT, the parenchyma-associated fluorescence showed high sensitivity (95%), but gut-associated fluorescence, which is known to be a sensitive diagnostic marker for schistosome-infected European travelers, was observed only in 76% of a sub-sample of 100 of the endemic sera. Among sera from egg-negative individuals, many gave positive reactions in several or all of the tests employed. These reactions (formally "false positive") are considered to represent true infections, since chemotherapy had not yet been delivered to this population. For the purpose of further surveys in Burkina Faso or other resource-poor settings, we suggest IHA as an accurate diagnostic test and propose to further improve its performance by including egg rather than worm antigens

    Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses

    Get PDF
    Soluble egg antigens of the parasitic helminth Schistosoma mansoni (S. mansoni egg antigen [SEA]) induce strong Th2 responses both in vitro and in vivo. However, the specific molecules that prime the development of Th2 responses have not been identified. We report that omega-1, a glycoprotein which is secreted from S. mansoni eggs and present in SEA, is capable of conditioning human monocyte-derived dendritic cells in vitro to drive T helper 2 (Th2) polarization with similar characteristics as whole SEA. Furthermore, using IL-4 dual reporter mice, we show that both natural and recombinant omega-1 alone are sufficient to generate Th2 responses in vivo, even in the absence of IL-4R signaling. Finally, omega-1–depleted SEA displays an impaired capacity for Th2 priming in vitro, but not in vivo, suggesting the existence of additional factors within SEA that can compensate for the omega-1–mediated effects. Collectively, we identify omega-1, a single component of SEA, as a potent inducer of Th2 responses

    Schistosoma mansoni Egg-Released IPSE/alpha-1 Dampens Inflammatory Cytokine Responses via Basophil Interleukin (IL)-4 and IL-13

    Get PDF
    Schistosomes control inflammation in their hosts via highly effective mechanisms such as induction of Tregs, Bregs, and alternatively activated macrophages (AAMs). Notably, IPSE/alpha-1, the major secretory product from Schistosoma mansoni eggs, triggers basophils to release interleukin (IL)-4 and IL-13. Both cytokines are essential for AAM induction, suggesting an important role for IPSE/alpha-1 in inflammation control. Here, we show by in vitro co-culture experiments that IPSE/alpha-1-induced basophil IL-4/IL-13 inhibited pro-inflammatory cytokine release from human LPS-activated monocytes. This effect was cell/cell contact-independent but dependent on IL-4, since it was abrogated in the presence of anti-IL-4 antibodies. Importantly, the IPSE/alpha-1-induced IL-4/IL-13 release from basophils was amplified in the presence of LPS. Moreover, monocytes co-cultured in the presence of LPS with IPSE/alpha-1-stimulated basophils adopted an AAM-like phenotype as assessed by elevated expression of CD206 and CD209. The putative in vivo relevance of these findings was supported by immunohistological staining of S. mansoni-infected murine tissue revealing close physical contact between IPSE/alpha-1 and basophils in schistosome egg granulomas. Taken together, we found that IPSE/alpha-1 dampens inflammatory cytokine responses by triggering basophil IL-4/IL-13, in particular in the context of TLR activation, thereby turning inflammatory monocytes into anti-inflammatory AAMs. This might represent a mechanism used by schistosomes to control inflammation in the host

    A Novel High Throughput Assay for Anthelmintic Drug Screening and Resistance Diagnosis by Real-Time Monitoring of Parasite Motility

    Get PDF
    Parasitic worms cause untold morbidity and mortality on billions of people and livestock. Drugs are available but resistance is problematic in livestock parasites and is a looming threat for human helminths. Currently, new drug discovery and resistance monitoring is hindered as drug efficacy is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods evaluated by eye using microscopy. Here we describe a novel application for a cell monitoring device (xCELLigence) that can simply and objectively assess real time anti-parasite efficacy of drugs on eggs, larvae and adults in a fully automated, label-free, high-throughput fashion. This technique overcomes the current low-throughput bottleneck in anthelmintic drug development and resistance detection pipelines. The widespread use of this device to screen for new therapeutics or emerging drug resistance will be an invaluable asset in the fight against human, animal and plant parasitic helminths and other pathogens that plague our planet

    Quantitative High-Throughput Screen Identifies Inhibitors of the Schistosoma mansoni Redox Cascade

    Get PDF
    Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 µL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC50s ranging from micromolar to the assay response limit (∼25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel therapeutics for other neglected tropical diseases

    Patterns and Risk Factors of Helminthiasis and Anemia in a Rural and a Peri-urban Community in Zanzibar, in the Context of Helminth Control Programs

    Get PDF
    In many parts of the developing world, parasitic worms and anemia are of considerable public health and economic importance. We studied the patterns and risk factors of parasitic worm infections in a rural and a peri-urban community on Zanzibar Island, Tanzania, in the context of national deworming programs. We invited 658 individuals aged between 5 and 100 years and examined their stool and urine for the presence of parasitic worm eggs. Additionally, we obtained a finger-prick blood sample to estimate the level of anemia and to assess for specific immune reactions against parasitic worm infections. We found that, despite large-scale deworming efforts in Zanzibar over the past 15 years, three-quarter of the rural participants and half of the peri-urban residents were infected with parasitic worms. Every second participant was anemic. Risk factors for a parasitic worm infection were age, sex, consumption of raw vegetables or salad, recent travel history, and socio-economic status. For a sustainable control of parasitic worm infections and prevention of anemia, access to safe and efficacious drugs, complemented with health education and improvements in water supply and adequate sanitation are necessary
    corecore