67 research outputs found

    Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs

    Get PDF
    Objectives: The objective of this study was to evaluate the sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) detecting feline coronavirus (FCoV) RNA in cerebrospinal fluid (CSF) of cats with and without neurological and/or ocular signs for the diagnosis of feline infectious peritonitis (FIP). Methods: This prospective case-control study included 34 cats. Nineteen cats had a definitive histopathological diagnosis of FIP (seven of these with neurological and/or ocular signs), and 15 cats had other diseases but similar clinical signs (three of these with neurological and/or ocular signs). Real-time RT-PCR was performed on the CSF of all cats, and sensitivity, specificity, and positive (PPV) and negative predictive values (NPV) were calculated. Results: Real-time RT-PCR of CSF showed a specificity of 100% in diagnosing FIP, a sensitivity of 42.1%, a PPV of 100% and an NPV of 57.7%. The sensitivity of the real-time RT-PCR of CSF in cats with neurological and/or ocular signs was 85.7%. Conclusions and relevance Although it is known that RT-PCR can give false positive results, especially if performed using serum or plasma, this real-time RT-PCR detecting FCoV RNA in CSF can be considered a reliable specific tool for the diagnosis of FIP. If only cats with neurological involvement are evaluated, the sensitivity of this real-time RT-PCR in CSF is also high

    The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2022-09-01, epub 2022-09-07Publication status: PublishedHigh carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, <50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p < 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p < 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation

    The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial

    Get PDF
    From MDPI via Jisc Publications RouterHistory: received 2022-07-22, accepted 2022-08-24, collection 2022-09, epub 2022-09-07Peer reviewed: TrueArticle version: VoRPublication status: PublishedFunder: Liverpool John Moores UniversityHigh carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, <50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p < 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p < 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation
    • …
    corecore