286 research outputs found
A 3–D Chemistry Transport Model for Titan’s Thermosphere
A 3–D model of the atmospheric chemistry of Saturn's moon Titan has been constructed which incorporates some of the latest advances of 1–D Titan chemistry models as well as 3–D GCMs for Titan in simplified-enough way that integrations covering many Earth years are numerically feasible. The thermosphere, with its shorter transport and chemistry time scales, reasonably simple circulation, and basic 3–D coverage of the moon with Cassini INMS observations, is the primary focus of this study.
The model is first validated as far as possible against the observations, showing that it performs quite well for most species, given the general margins of error and uncertainties inherent in Titan modeling. Winds are not seen to have the same overriding influence on concentrations as an earlier study using a pre-Cassini GCM wind field suggested (Doege et al., 2008), but nonetheless many species such as ethane exhibit sensitivity to advection and a chemistry transport model with advection does improve the fit to observations over a model with only diffusive transport. Overall it is found that state-of-the-art GCMs for Titan deliver winds realistic enough for the chemistry model to correctly reproduce the basic shapes of chemical species distributions with a variety of chemical lifetimes. In some instances, the limitations of the Cassini measurements become apparent and model results point to difficulties and uncertainties with the INMS data retrieval process (e.g. for C4H6) that would be less conspicuous by analyzing only Cassini observations without a model.
Then some specific scientific topics are explored, namely the influence of the Solar cycle and of vertically-propagating tidal waves. As the Cassini measurements so far cover a period of decreasing and generally below-average Solar activity, Solar minimum conditions are particularly of interest, because chemistry models for Titan have so far normally been run for Solar average UV output. It is found that some species such as propane react strongly to changes in Solar irradiance and the resulting concentrations of primary photolysis products. However, chemical distributions remain recognizable from the Control experiment and accounting for the Solar cycle does not resolve remaining issues with chemistry schemes for Titan's atmosphere.
Atmospheric tidal waves which are forced mainly in the lower atmosphere also influence the thermosphere significantly, therefore the possbility that chemical concentrations might be measurably affected by these waves is explored with the model. The conclusion is drawn that the effects of such waves through their temperature perturbations alone, while they are easily detectable in the model, might be too weak to identify them in Cassini measurements
Roughness Signature of Tribological Contact Calculated by a New Method of Peaks Curvature Radius Estimation on Fractal Surfaces
This paper proposes a new method of roughness peaks curvature radii calculation and its application to tribological contact analysis as characteristic signature of tribological contact. This method is introduced via the classical approach of the calculation of radius of asperity. In fact, the proposed approach provides a generalization to fractal profiles of the Nowicki's method [Nowicki B. Wear Vol.102, p.161-176, 1985] by introducing a fractal concept of curvature radii of surfaces, depending on the observation scale and also numerically depending on horizontal lines intercepted by the studied profile. It is then established the increasing of the dispersion of the measures of that lines with that of the corresponding radii and the dependence of calculated radii on the fractal dimension of the studied curve. Consequently, the notion of peak is mathematically reformulated. The efficiency of the proposed method was tested via simulations of fractal curves such as those described by Brownian motions. A new fractal function allowing the modelling of a large number of physical phenomena was also introduced, and one of the great applications developed in this paper consists in detecting the scale on which the measurement system introduces a smoothing artifact on the data measurement. New methodology is applied to analysis of tribological contact in metal forming process
Insulin Concentration Modulates Hepatic Lipid Accumulation in Mice in Part via Transcriptional Regulation of Fatty Acid Transport Proteins
Fatty liver disease (FLD) is commonly associated with insulin resistance and obesity, but interestingly it is also observed at low insulin states, such as prolonged fasting. Thus, we asked whether insulin is an independent modulator of hepatic lipid accumulation.In mice we induced, hypo- and hyperinsulinemia associated FLD by diet induced obesity and streptozotocin treatment, respectively. The mechanism of free fatty acid induced steatosis was studied in cell culture with mouse liver cells under different insulin concentrations, pharmacological phosphoinositol-3-kinase (PI3K) inhibition and siRNA targeted gene knock-down. We found with in vivo and in vitro models that lipid storage is increased, as expected, in both hypo- and hyperinsulinemic states, and that it is mediated by signaling through either insulin receptor substrate (IRS) 1 or 2. As previously reported, IRS-1 was up-regulated at high insulin concentrations, while IRS-2 was increased at low levels of insulin concentration. Relative increase in either of these insulin substrates, was associated with an increase in liver-specific fatty acid transport proteins (FATP) 2&5, and increased lipid storage. Furthermore, utilizing pharmacological PI3K inhibition we found that the IRS-PI3K pathway was necessary for lipogenesis, while FATP responses were mediated via IRS signaling. Data from additional siRNA experiments showed that knock-down of IRSs impacted FATP levels.States of perturbed insulin signaling (low-insulin or high-insulin) both lead to increased hepatic lipid storage via FATP and IRS signaling. These novel findings offer a common mechanism of FLD pathogenesis in states of both inadequate (prolonged fasting) and ineffective (obesity) insulin signaling
Activation of Hypoxia Inducible Factor 1 Is a General Phenomenon in Infections with Human Pathogens
Background: Hypoxia inducible factor (HIF)-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. Methodology/Principal Findings: Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i) in all ex vivo in biopsies of patients suffering from skin infections, (ii) in vitro using cell culture infection models and (iii) in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs) of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. Conclusions/Significance: Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections
Targeted disruption of Slc2a8 (GLUT8) reduces motility and mitochondrial potential of spermatozoa
GLUT8 is a class 3 sugar transport facilitator which is predominantly expressed in testis and also detected in brain, heart, skeletal muscle, adipose tissue, adrenal gland, and liver. Since its physiological function in these tissues is unknown, we generated a Slc2a8 null mouse and characterized its phenotype. Slc2a8 knockout mice appeared healthy and exhibited normal growth, body weight development and glycemic control, indicating that GLUT8 does not play a significant role for maintenance of whole body glucose homeostasis. However, analysis of the offspring distribution of heterozygous mating indicated a lower number of Slc2a8 knockout offspring (30.5:47.3:22.1%, Slc2a8+/+, Slc2a8+/−, and Slc2a8−/− mice, respectively) resulting in a deviation (p = 0.0024) from the expected Mendelian distribution. This difference was associated with lower ATP levels, a reduced mitochondrial membrane potential and a significant reduction of sperm motility of the Slc2a8 knockout in comparison to wild-type spermatozoa. In contrast, number and survival rate of spermatozoa were not altered. These data indicate that GLUT8 plays an important role in the energy metabolism of sperm cells
Numerical analysis of different heating systems for warm sheet metal forming
The main goal of this study is to present an analysis
of different heating methods frequently used in laboratory
scale and in the industrial practice to heat blanks at warm
temperatures. In this context, the blank can be heated inside
the forming tools (internal method) or using a heating system
(external method). In order to perform this analysis, a finite
element model is firstly validated with the simulation of the
direct resistance system used in a Gleeble testing machine.
The predicted temperature was compared with the temperature
distribution recorded experimentally and a good agreement
was found. Afterwards, a finite element model is used to
predict the temperature distribution in the blank during the
heating process, when using different heating methods. The
analysis also includes the evaluation of a cooling phase associated
to the transport phase for the external heating methods.
The results of this analysis show that neglecting the heating
phase and a transport phase could lead to inaccuracies in the
simulation of the forming phase.The authors gratefully acknowledge the financial
support of the Portuguese Foundation for Science and Technology (FCT)
under project PTDC/EMS-TEC/1805/2012 and by FEDER funds
through the program COMPETE—Programa Operacional Factores de
Competitividade, under the project CENTRO-07-0224-FEDER-002001
(MT4MOBI). The authors would like to thank Prof. A. Andrade-Campos
for helpful contributions on the development of the finite element code
presented in this work.info:eu-repo/semantics/publishedVersio
Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor
<p>Abstract</p> <p>Background</p> <p>Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma.</p> <p>Methods</p> <p>HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration.</p> <p>Results</p> <p>17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration.</p> <p>Conclusions</p> <p>Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in <it>in vivo </it>induction of HIF. <it>In vitro </it>data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.</p
Polymorphisms in the Presumptive Promoter Region of the SLC2A9 Gene Are Associated with Gout in a Chinese Male Population
BACKGROUND: Glucose transporter 9 (GLUT9) is a high-capacity/low-affinity urate transporter. To date, several recent genome-wide association studies (GWAS) and follow-up studies have identified genetic variants of SLC2A9 associated with urate concentrations and susceptibility to gout. We therefore investigated associations between gout and polymorphisms and haplotypes in the presumptive promoter region of GLUT9 in Chinese males. METHODOLOGY/PRINCIPAL FINDINGS: The approximately 2000 bp presumptive promoter region upstream of the start site of exon 1 of GLUT9 was sequenced and subjected to genetic analysis. A genotype-phenotype correlation was performed and polymorphisms-induced changes in transcription factor binding sites were predicted. Of 21 SNPs identified in GLUT9, five had not been previously reported. Two of the SNPs (rs13124007 and rs6850166) were associated with susceptibility to gout (p = 0.009 and p = 0.042, respectively). The C allele of rs13124007 appeared to be the risk allele for predisposition to gout (p = 0.006, OR 1.709 [95% CI 1.162-2.514]). For rs6850166, an increased risk of gout was associated with the A allele (p = 0.029, OR 1.645 [95% CI 1.050-2.577]). After Bonferroni correction, there was statistically difference in rs13124007 allele frequencies between gout cases and controls (P = 0.042). Haplotype analyses showed that haplotype GG was a protective haplotype (p = 0.0053) and haplotype CA was associated with increased risk of gout (p = 0.0326). Genotype-phenotype analysis among gout patients revealed an association of rs13124007 with serum triglycerides levels (P = 0.001). The C to G substitution in polymorphism rs13124007 resulted in a loss of a binding site for transcription factor interferon regulatory factor 1 (IRF-1). CONCLUSIONS/SIGNIFICANCE: Polymorphisms rs13124007 and rs6850166 are associated with susceptibility to gout in Chinese males
Photoacclimation in Dunaliella tertiolecta reveals a unique NPQ pattern upon exposure to irradiance
Highly time-resolved photoacclimation patterns of the chlorophyte microalga Dunaliella tertiolecta during exposure to an off–on–off (block) light pattern of saturating photon flux, and to a regime of consecutive increasing light intensities are presented. Non-photochemical quenching (NPQ) mechanisms unexpectedly responded with an initial decrease during dark–light transitions. NPQ values started to rise after light exposure of approximately 4 min. State-transitions, measured as a change of PSII:PSI fluorescence emission at 77 K, did not contribute to early NPQ oscillations. Addition of the uncoupler CCCP, however, caused a rapid increase in fluorescence and showed the significance of qE for NPQ. Partitioning of the quantum efficiencies showed that constitutive NPQ was (a) higher than qE-driven NPQ and (b) responded to light treatment within seconds, suggesting an active role of constitutive NPQ in variable energy dissipation, although it is thought to contribute statically to NPQ. The PSII connectivity parameter p correlated well with F′, Fm′ and NPQ during the early phase of the dark–light transients in sub-saturating light, suggesting a plastic energy distribution pattern within energetically connected PSII centres. In consecutive increasing photon flux experiments, correlations were weaker during the second light increment. Changes in connectivity can present an early photoresponse that are reflected in fluorescence signals and NPQ and might be responsive to the short-term acclimation state, and/or to the actinic photon flux
- …