58 research outputs found
The Next Generation Balloon-Borne Large Aperture Submillimeter Telescope (blast-Tng)
Large areas of astrophysics, such as precision cosmology, have benefited greatly from large maps and datasets, yielded by telescopes of ever-increasing number and ability. However, due to the unique challenges posed by submillimeter polarimetry, the study of molecular cloud dynamics and star formation remain stunted. Previously, polarimetry data was limited to a few vectors on only the brightest areas of molecular clouds. This made drawing statistically-driven conclusions a daunting task. However, the successful flight of the Balloon-born Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) generated maps with thousands of independent polarization measurements of molecular clouds, and ushered in a new era of empirical modeling of molecular cloud dynamics. Now that the potential benefits from large-scale maps of magnetic fields in molecular clouds had been identified, a successor that would truly unlock the secrets must be born.
The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG), the successor to BLASTPol, has the ability to make larger and more detailed maps of magnetic fields in molecular clouds. It will push the field of star formation into a statistics-driven, empirical realm. With these large, detailed datasets, astronomers will be able to find new relationships between the dust dynamics and the magnetic fields. The field will surge to a new level of understanding. One of the key enabling technologies of BLAST-TNG is its three arrays of polarization-sensitive Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting RLC circuits with a resonant frequency that shifts proportionally to the amount of incident radiation. The key feature of MKIDs is that thousands of detectors, each with their own unique resonant frequency, can be coupled to the same readout line. This technology will be able to drive the production of large-scale monolithic arrays, containing tens or hundreds of thousands of detectors, resulting in an ever-increasing rate of scientific progress.
The current limiting factor that determines how many MKIDs can be placed on the same readout line is the bandwidth and processing limitations of the readout hardware. BLAST-TNG has pushed this technology forward by implementing the first Reconfigurable Open-Architecture Computing Hardware (ROACH2) based readout system. This has significantly raised the processing abilities of the MKID readout electronics, enabling over 1000 MKIDs to be read out on a single line. It is also the first ever ROACH (1 or 2) based system to ever be flown on a long duration balloon (LDB) payload.
This thesis documents the first-ever deployment of MKIDs on a balloon payload. This is a significant technological step towards an MKID-based satellite payload. This thesis overviews the balloon payload, details the underlying detector physics, catalogs the detector and full-scale array development, and ends with the room-temperature readout electronics
Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors
We demonstrate photon-noise limited performance at sub-millimeter wavelengths
in feedhorn-coupled, microwave kinetic inductance detectors (MKIDs) made of a
TiN/Ti/TiN trilayer superconducting film, tuned to have a transition
temperature of 1.4~K. Micro-machining of the silicon-on-insulator wafer
backside creates a quarter-wavelength backshort optimized for efficient
coupling at 250~\micron. Using frequency read out and when viewing a variable
temperature blackbody source, we measure device noise consistent with photon
noise when the incident optical power is ~0.5~pW, corresponding to noise
equivalent powers ~3 W/. This
sensitivity makes these devices suitable for broadband photometric applications
at these wavelengths
Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays
Polarized thermal emission from interstellar dust grains can be used to map
magnetic fields in star forming molecular clouds and the diffuse interstellar
medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for
Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced
degree-scale polarization maps of several nearby molecular clouds with
arcminute resolution. The success of BLASTPol has motivated a next-generation
instrument, BLAST-TNG, which will use more than 3000 linear polarization
sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m
diameter carbon fiber primary mirror to make diffraction-limited observations
at 250, 350, and 500 m. With 16 times the mapping speed of BLASTPol,
sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to
examine nearby molecular clouds and the diffuse galactic dust polarization
spectrum in unprecedented detail. The 250 m detector array has been
integrated into the new cryogenic receiver, and is undergoing testing to
establish the optical and polarization characteristics of the instrument.
BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for
applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from
Antarctica in December 2017 for 28 days and will be the first balloon-borne
telescope to offer a quarter of the flight for "shared risk" observing by the
community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy VIII, June 29th, 201
Comparing complex impedance and bias step measurements of Simons Observatory transition edge sensors
The Simons Observatory (SO) will perform ground-based observations of the
cosmic microwave background (CMB) with several small and large aperture
telescopes, each outfitted with thousands to tens of thousands of
superconducting aluminum manganese (AlMn) transition-edge sensor bolometers
(TESs). In-situ characterization of TES responsivities and effective time
constants will be required multiple times each observing-day for calibrating
time-streams during CMB map-making. Effective time constants are typically
estimated in the field by briefly applying small amplitude square-waves on top
of the TES DC biases, and fitting exponential decays in the bolometer response.
These so-called "bias step" measurements can be rapidly implemented across
entire arrays and therefore are attractive because they take up little
observing time. However, individual detector complex impedance measurements,
while too slow to implement during observations, can provide a fuller picture
of the TES model and a better understanding of its temporal response. Here, we
present the results of dark TES characterization of many prototype SO
bolometers and compare the effective thermal time constants measured via bias
steps to those derived from complex impedance data.Comment: 10 pages, 6 figures, SPIE Astronomical Telescopes + Instrumentation
2020, Paper Number: 11453-18
- …