28 research outputs found
Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury
Damage to endothelial cells contributes to acute kidney injury (AKI) by causing impaired perfusion, while the permanent loss of the capillary network following AKI has been suggested to promote chronic kidney disease. Therefore, strategies to protect renal vasculature may impact both short-term recovery and long-term functional preservation post-AKI. Human adipose stromal cells (hASCs) possess pro-angiogenic and anti-inflammatory properties and therefore have been tested as a therapeutic agent to treat ischaemic conditions. This study evaluated hASC potential to facilitate recovery from AKI with specific attention to capillary preservation and inflammation. Male Sprague Dawley rats were subjected to bilateral ischaemia/reperfusion and allowed to recover for either two or seven days. At the time of reperfusion, hASCs or vehicle was injected into the suprarenal abdominal aorta. hASC-treated rats had significantly greater survival compared to vehicle-treated rats (88.7% versus 69.3%). hASC treatment showed hastened recovery as demonstrated by lower creatinine levels at 48 hrs, while tubular damage was significantly reduced at 48 hrs. hASC treatment resulted in a significant decrease in total T cell and Th17 cell infiltration into injured kidneys at 2 days post-AKI, but an increase in accumulation of regulatory T cells. By day 7, hASC-treated rats showed significantly attenuated capillary rarefaction in the cortex (15% versus 5%) and outer medulla (36% versus 18%) compared to vehicle-treated rats as well as reduced accumulation of interstitial alpha-smooth muscle actin-positive myofibroblasts. These results suggest for the first time that hASCs improve recovery from I/R-induced injury by mechanisms that contribute to decrease in inflammation and preservation of peritubular capillaries
Human adipose derived stromal/stem cells (hASCs) protect against STZ-induced hyperglycemia; analysis of hASC-derived paracrine effectors
Adipose-derived stromal/stem cells (ASCs) ameliorate hyperglycemia in rodent models of islet transplantation and autoimmune diabetes, yet the precise human ASC (hASC)-derived factors responsible for these effects remain largely unexplored. Here, we show that systemic administration of hASCs improved glucose tolerance, preserved β cell mass, and increased β cell proliferation in streptozotocin-treated nonobese diabetic/severe combined immunodeficient mice. Coculture experiments combining mouse or human islets with hASCs demonstrated that islet viability and function were improved by hASCs following prolonged culture or treatment with proinflammatory cytokines. Analysis of hASC-derived factors revealed vascular endothelial growth factor and tissue inhibitor of metalloproteinase 1 (TIMP-1) to be highly abundant factors secreted by hASCs. Notably, TIMP-1 secretion increased in the presence of islet stress from cytokine treatment, while TIMP-1 blockade was able to abrogate in vitro prosurvival effects of hASCs. Following systemic administration by tail vein injection, hASCs were detected in the pancreas and human TIMP-1 was increased in the serum of injected mice, while recombinant TIMP-1 increased viability in INS-1 cells treated with interleukin-1beta, interferon-gamma, and tumor necrosis factor alpha. In aggregate, our data support a model whereby factors secreted by hASCs, such as TIMP-1, are able to mitigate against β cell death in rodent and in vitro models of type 1 diabetes through a combination of local paracrine as well as systemic effects
Intravenous xenogeneic transplantation of human adipose-derived stem cells improves left ventricular function and microvascular integrity in swine myocardial infarction model
OBJECTIVES:
The potential for beneficial effects of adipose-derived stem cells (ASCs) on myocardial perfusion and left ventricular dysfunction in myocardial ischemia (MI) has not been tested following intravenous delivery.
METHODS:
Surviving pigs following induction of MI were randomly assigned to 1 of 3 different groups: the placebo group (n = 7), the single bolus group (SB) (n = 7, 15 × 10(7) ASCs), or the divided dose group (DD) (n = 7, 5 × 10(7) ASCs/day for three consecutive days). Myocardial perfusion defect area and coronary flow reserve (CFR) were compared during the 28-day follow-up. Also, serial changes in the absolute number of circulating CD4(+) T and CD8(+) T cells were measured.
RESULTS:
The increases in ejection fraction were significantly greater in both the SB and the DD groups compared to the placebo group (5.4 ± 0.9%, 3.7 ± 0.7%, and -0.4 ± 0.6%, respectively), and the decrease in the perfusion defect area was significantly greater in the SB group than the placebo group (-36.3 ± 1.8 and -11.5 ± 2.8). CFR increased to a greater degree in the SB and the DD groups than in the placebo group (0.9 ± 0.2, 0.8 ± 0.1, and 0.2 ± 0.2, respectively). The circulating number of CD8(+) T cells was significantly greater in the SB and DD groups than the placebo group at day 7 (3,687 ± 317/µL, 3,454 ± 787/µL, and 1,928 ± 457/µL, respectively). The numbers of small vessels were significantly greater in the SB and the DD groups than the placebo group in the peri-infarct area.
CONCLUSIONS:
Both intravenous SB and DD delivery of ASCs are effective modalities for the treatment of MI in swine. Intravenous delivery of ASCs, with its immunomodulatory and angiogenic effects, is an attractive noninvasive approach for myocardial rescue
Therapeutic Potential of Adipose-Derived Therapeutic Factor Concentrate for Treating Critical Limb Ischemia
Transplantation of adipose-derived stem cells (ADSCs) is an emerging therapeutic option for addressing intractable diseases such as critical limb ischemia (CLI). Evidence suggests that therapeutic effects of ADSCs are primarily mediated through paracrine mechanisms rather than transdifferentiation. These secreted factors can be captured in conditioned medium (CM) and concentrated to prepare a therapeutic factor concentrate (TFC) composed of a cocktail of beneficial growth factors and cytokines that individually and in combination demonstrate disease-modifying effects. The ability of a TFC to promote reperfusion in a rabbit model of CLI was evaluated. A total of 27 adult female rabbits underwent surgery to induce ischemia in the left hindlimb. An additional five rabbits served as sham controls. One week after surgery, the ischemic limbs received intramuscular injections of either (1) placebo (control medium), (2) a low dose of TFC, or (3) a high dose of TFC. Limb perfusion was serially assessed with a Doppler probe. Blood samples were analyzed for growth factors and cytokines. Tissue was harvested postmortem on day 35 and assessed for capillary density by immunohistochemistry. At 1 month after treatment, tissue perfusion in ischemic limbs treated with a high dose of TFC was almost double (p < 0.05) that of the placebo group [58.8 ± 23 relative perfusion units (RPU) vs. 30.7 ± 13.6 RPU; mean ± SD]. This effect was correlated with greater capillary density in the affected tissues and with transiently higher serum levels of the angiogenic and prosurvival factors vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). The conclusions from this study are that a single bolus administration of TFC demonstrated robust effects for promoting tissue reperfusion in a rabbit model of CLI and that a possible mechanism of revascularization was promotion of angiogenesis by TFC. Results of this study demonstrate that TFC represents a potent therapeutic cocktail for patients with CLI, many of whom are at risk for amputation of the affected limb
Эпикардиальная трансплантация пластов из мезенхимальных стромальных клеток жировой клетчатки способствует активации эпикарда и стимулирует ангиогенез при инфаркте миокарда (экспериментальное исследование)
Aim: to evaluate the impact of tissue-engineered structures (TES) transplantation based on mesenchymal stromal cell (MSC) sheets in myocardial infarction on the activation of the epicardial cell pool and vascularization of the damaged zone.Materials and methods. Mesenchymal stromal cells were obtained from samples of subcutaneous fat of Wistar rats and C57Bl/6 mice. Tissue engineering structures were obtained by culturing cell sheets on thermosensitive plates (Nunc Dishes with UpCell Surface). Transplantation of TESs was performed after myocardial infarction modeling in rats by ligation of the anterior descending coronary artery. Transplant cells and damaged zones were assessed using immunofluorescent staining of myocardial cryosections. The impact of MSC secretion products on the migration activity of epicardial cells in vitro was evaluated using the explant culture method.Results. MSCs in TESs after transplantation remain viable and induce activation of the epicardial cell pool and local increase of the damaged zone vascularization. The in vitro experiments showed that the conditioned environment of MSCs stimulates the migratory activity of epicardial cells and initiates the formation of activated Wt1/POD1 precursor cells.Conclusion. TES transplantation on the basis of MSC sheets seems to be a promising approach for effective delivery of viable cells into myocardium to activate the epicardial cellular niche and reparative angiogenesis.Цель исследования: оценить влияние трансплантации тканеинженерных конструкций (ТИК) на основе пластов мезенхимальных стромальных клеток (МСК) при инфаркте миокарда на активацию эпикардиального пула клеток и васкуляризацию зоны повреждения.Материалы и методы. МСК получили из образцов подкожной жировой клетчатки крыс линии Wistar и мышей линии C57Bl/6. ТИК получили путем культивирования пластов клеток на чашках с термочувствительным покрытием (Nunc Dishes with UpCell Surface). Трансплантацию ТИК проводили после моделирования инфаркта миокарда у крысы путем перевязки передней нисходящей коронарной артерии. Оценку состояния клеток трансплантата и зоны повреждения проводили с использованием иммунофлуоресцентного окрашивания криосрезов миокарда. Для оценки влияния продуктов секреции МСК на миграционную активность клеток эпикарда in vitro использовали метод эксплантной культуры.Результаты. МСК в составе ТИК после трансплантации сохраняют жизнеспособность и вызывают активацию эпикардиального пула клеток и локальное повышение васкуляризации зоны повреждения. Эксперименты in vitro показали, что кондиционированная среда МСК оказывает стимулирующее воздействие на миграционную активность клеток эпикарда и вызывает образование активированных Wt1/POD1 клеток-предшественниц.Заключение. Трансплантация ТИК на основе пластов МСК представляется рациональным подходом для эффективной доставки жизнеспособных клеток в миокард с целью активирующего воздействия на эпикардиальную клеточную нишу и репаративный ангиогенез
Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo
Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mice's limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation
Recommended from our members
Development of a student-driven undergraduate program in regenerative medicine.
As it begins to enter the clinic, regenerative medicine has the potential to revolutionize healthcare. Although there exists a growing need for individuals well-versed in the practice of regenerative medicine, few undergraduate institutions offer opportunities to learn about the topic. This article highlights the conception of two novel undergraduate courses in regenerative medicine developed through collaboration between students and faculty at our University to fill this void in the undergraduate curriculum. Lectures from scientists, healthcare professionals, regulatory experts and biotechnology leaders introduced students to regenerative medicine research and the translational process, and a certificate program incorporating relevant coursework and research experience is in development. This pipeline will guide promising undergraduate students to the field of regenerative medicine
Recommended from our members
Development of a student-driven undergraduate program in regenerative medicine.
As it begins to enter the clinic, regenerative medicine has the potential to revolutionize healthcare. Although there exists a growing need for individuals well-versed in the practice of regenerative medicine, few undergraduate institutions offer opportunities to learn about the topic. This article highlights the conception of two novel undergraduate courses in regenerative medicine developed through collaboration between students and faculty at our University to fill this void in the undergraduate curriculum. Lectures from scientists, healthcare professionals, regulatory experts and biotechnology leaders introduced students to regenerative medicine research and the translational process, and a certificate program incorporating relevant coursework and research experience is in development. This pipeline will guide promising undergraduate students to the field of regenerative medicine