1,897 research outputs found
Exact Moving and Stationary Solutions of a Generalized Discrete Nonlinear Schrodinger Equation
We obtain exact moving and stationary, spatially periodic and localized
solutions of a generalized discrete nonlinear Schr\"odinger equation. More
specifically, we find two different moving periodic wave solutions and a
localized moving pulse solution. We also address the problem of finding exact
stationary solutions and, for a particular case of the model when stationary
solutions can be expressed through the Jacobi elliptic functions, we present a
two-point map from which all possible stationary solutions can be found.
Numerically we demonstrate the generic stability of the stationary pulse
solutions and also the robustness of moving pulses in long-term dynamics.Comment: 22 pages, 7 figures, to appear in J. Phys.
Exploring the nuclear pion dispersion relation through the anomalous coupling of photon to photon and neutral pion
We investigate the possibility of measuring the pion dispersion relation in
nuclear matter through the anomalous coupling in the reaction \gamma - \gamma'
\pi_0. It is shown that this reaction permits the study of pionic modes for
space-like momenta. If the pion is softened in nuclear matter due to mixing
with the delta-hole state, significant strength for this reaction is expected
to move into the space-like region. Competing background processes are
evaluated, and it is concluded that useful insight can be obtained
experimentally, but only through a difficult exclusive measurement
Soliton-like Spin State in the A-like Phase of 3He in Anisotropic Aerogel
We have found a new stable spin state in the A-like phase of superfluid 3He
confined to intrinsically anisotropic aerogel. The state can be formed by
radiofrequency excitation applied while cooling through the superfluid
transition temperature and its NMR properties are different from the standard
A-like phase obtained in the limit of very small excitation. It is possible
that this new state is formed by textural domain walls pinned by aerogel.Comment: 9 pages, 3 figures. Submitted to J. of Low Tem. Phys. (QFS2007
Proceedings
Nonequilibrium phenomena in multiple normal-superconducting tunnel heterostructures
Using the nonequilibrium theory of superconductivity with the tunnel
Hamiltonian, we consider a mesoscopic NISINISIN heterostructure, i.e., a
structure consisting of five intermittent normal-metal (N) and superconducting
(S) regions separated by insulating tunnel barriers (I). Applying the bias
voltage between the outer normal electrodes one can drive the central N island
very far from equilibrium. Depending on the resistance ratio of outer and inner
tunnel junctions, one can realize either effective electron cooling in the
central N island or create highly nonequilibrium energy distributions of
electrons in both S and N islands. These distributions exhibit multiple peaks
at a distance of integer multiples of the superconducting chemical potential.
In the latter case the superconducting gap in the S islands is strongly
suppressed as compared to its equilibrium value
1D Frustrated Ferromagnetic Model with Added Dzyaloshinskii-Moriya Interaction
The one-dimensional (1D) isotropic frustrated ferromagnetic spin-1/2 model is
considered. Classical and quantum effects of adding a Dzyaloshinskii-Moriya
(DM) interaction on the ground state of the system is studied using the
analytical cluster method and numerical Lanczos technique. Cluster method
results, show that the classical ground state magnetic phase diagram consists
of only one single phase: "chiral". The quantum corrections are determined by
means of the Lanczos method and a rich quantum phase diagram including the
gapless Luttinger liquid, the gapped chiral and dimer orders is obtained.
Moreover, next nearest neighbors will be entangled by increasing DM interaction
and for open chains, end-spins are entangled which shows the long distance
entanglement (LDE) feature that can be controlled by DM interaction.Comment: 8 pages, 9 figure
Orbital glass and spin glass states of 3He-A in aerogel
Glass states of superfluid A-like phase of 3He in aerogel induced by random
orientations of aerogel strands are investigated theoretically and
experimentally. In anisotropic aerogel with stretching deformation two glass
phases are observed. Both phases represent the anisotropic glass of the orbital
ferromagnetic vector l -- the orbital glass (OG). The phases differ by the spin
structure: the spin nematic vector d can be either in the ordered spin nematic
(SN) state or in the disordered spin-glass (SG) state. The first phase (OG-SN)
is formed under conventional cooling from normal 3He. The second phase (OG-SG)
is metastable, being obtained by cooling through the superfluid transition
temperature, when large enough resonant continuous radio-frequency excitation
are applied. NMR signature of different phases allows us to measure the
parameter of the global anisotropy of the orbital glass induced by deformation.Comment: 7 pages, 6 figures, Submitted to Pis'ma v ZhETF (JETP Letters
Kinks in dipole chains
It is shown that the topological discrete sine-Gordon system introduced by
Speight and Ward models the dynamics of an infinite uniform chain of electric
dipoles constrained to rotate in a plane containing the chain. Such a chain
admits a novel type of static kink solution which may occupy any position
relative to the spatial lattice and experiences no Peierls-Nabarro barrier.
Consequently the dynamics of a single kink is highly continuum like, despite
the strongly discrete nature of the model. Static multikinks and kink-antikink
pairs are constructed, and it is shown that all such static solutions are
unstable. Exact propagating kinks are sought numerically using the
pseudo-spectral method, but it is found that none exist, except, perhaps, at
very low speed.Comment: Published version. 21 pages, 5 figures. Section 3 completely
re-written. Conclusions unchange
Surface Nanoscale Axial Photonics (SNAP) at the silica microcapillary with ultrathin wall
We demonstrate SNAP microresonators fabricated in silica capillary fiber with ultrathin walls by local annealing with a focused CO2 laser and internal etching with hydrofluoric acid. We investigate the introduced capillary wall nonuniformity and demonstrate the feasibility of advanced microfluidic sensing with SNAP microresonators
CP-odd Phase Correlations and Electric Dipole Moments
We revisit the constraints imposed by electric dipole moments (EDMs) of
nucleons and heavy atoms on new CP-violating sources within supersymmetric
theories. We point out that certain two-loop renormalization group corrections
induce significant mixing between the basis-invariant CP-odd phases. In the
framework of the constrained minimal supersymmetric standard model (CMSSM), the
CP-odd invariant related to the soft trilinear A-phase at the GUT scale,
theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino
masses at the weak scale. The latter give one-loop contributions to EDMs
enhanced by tan beta, and can provide the dominant contribution to the electron
EDM induced by theta_A. We perform a detailed analysis of the EDM constraints
within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which
may be obtained assuming generic phases, as well as the limits on the CP-odd
phases for some specific parameter points where detailed phenomenological
studies are available. We also illustrate how this reach will expand with
results from the next generation of experiments which are currently in
development.Comment: 31 pages, 21 eps figures; v2: additional remarks on 2-loop threshold
corrections and references added; v3: typos corrected, to appear in Phys.
Rev.
Phase diagram of superfluid 3He in "nematically ordered" aerogel
Results of experiments with liquid 3He immersed in a new type of aerogel are
described. This aerogel consists of Al2O3 strands which are nearly parallel to
each other, so we call it as a "nematically ordered" aerogel. At all used
pressures a superfluid transition was observed and a superfluid phase diagram
was measured. Possible structures of the observed superfluid phases are
discussed.Comment: 6 pages, 8 figures. Submitted to Pis'ma v ZhETF (JETP Letters
- …