570 research outputs found
Development of a pediatric formulation for treatment of P. falciparum malaria: Coartem® (artemether-lumefantrine) Dispersible
HIV-positive nigerian adults harbor significantly higher serum lumefantrine levels than HIV-negative individuals seven days after treatment for Plasmodium falciparum infection.
Management of coinfection with malaria and HIV is a major challenge to public health in developing countries, and yet potential drug-drug interactions between antimalarial and antiviral regimens have not been adequately investigated in people with both infections. Each of the constituent components of artemether-lumefantrine, the first-line regimen for malaria treatment in Nigeria, and nevirapine, a major component of highly active antiretroviral therapy, are drugs metabolized by the cytochrome P450 3A4 isoenzyme system, which is also known to be induced by nevirapine. We examined potential interactions between lumefantrine and nevirapine in 68 HIV-positive adults, all of whom were diagnosed with asymptomatic Plasmodium falciparum infections by microscopy. Post hoc PCR analysis confirmed the presence of P. falciparum in only a minority of participants. Day 7 capillary blood levels of lumefantrine were significantly higher in HIV-positive participants than in 99 HIV-negative controls (P = 0.0011). Associations between day 7 levels of lumefantrine and risk of persistent parasitemia could not be evaluated due to inadequate power. Further investigations of the impact of nevirapine on in vivo malaria treatment outcomes in HIV-infected patients are thus needed
Genetic characteristics of Plasmodium vivax from Northern Mali
Introduction: The surprising presence of P. vivax in West Africa and their ability to infect a Duffy negative population is one more threat to public health. In order to contribute to malaria elimination efforts, there is a need to investigate the origin and characteristics of P. vivax population isolates in Northern Mali. Next Generation Sequence Analysis (NGSA) can help us understand parasite genetic characteristics although low parasite density is a challenge for whole genome sequencing (WGS). In the present work, we investigated if selective whole genome amplification (sWGA) can enrich P. vivax DNA extracted from Rapid Diagnostic Tests (RDTs) for Whole Genome Sequencing. We also investigated the origin and the susceptibility to antimalarial drugs of the strains isolated in Northern Mali. Methods: Parasite DNA was extracted from 267 RDTs using the QIAamp DNA mini kit, then nested PCR and 7 samples were positive for P. vivax. After sWGA, the whole genomes were sequenced using the Illumina platform. Next Generation Sequences Analysis was done followed by population differentiation analyses. Twenty-two additional P. vivax whole genomes from other parts of the World were downloaded from the European Nucleotide Archive for further Neighbour Joining analysis. Results: The sequences extracted from RDTs showed high contamination with human DNA (80%). From the parasite DNA, in total 69529 SNPs were found in the seven P. vivax strains of Northern Mali. The most significant p-values per SNP were carried by the chromosomes 2, 3, 4, 5, 12, 13 and 14. With regard to variant effects, the Transition/Transversion ratio was 1.1. The density of variants with a high effect was 1.62%. There was no mutation associated with antimalarial drugs resistance on pvcrt-o or pvmdr-1 genes. Pairwise differentiation suggests a high degree of relatedness between P. vivax strains isolated in Northern Mali. The NeighboursJoining analysis shows clearly that strains from Mali cluster together and are genetically distinct from those from Mauritania, which shares a border with Mali. The strains isolated in Northern Mali are genetically closer to those from Madagascar, India and Latina America. Conclusion: We did not identify mutations associated to the resistance to antimalarial drugs in pvcrt-o and pvmdr-1 genes. This study confirms that P. vivax strains genetically distinct from those of Mauritania are circulating in Mali. Finally, we conclude that sWGA is a feasible approach for P. vivax DNA enrichment for WGS despite the high proportion of human contamination
Neutrophil levels and artemisinin-based combination therapy efficacy in the treatment of Plasmodium falciparum infections in vulnerable populations in Mali
Reducing the burden of malaria among pregnant women and children remains a major public health challenge in many African countries. Beside malaria, undernourishment (low weight) in children is also a major cause of morbidity and mortality in low-income countries. Neutrophils, the most abundant white blood cells of our immune system, play a fundamental role in the innate immune defense. Artemisinin-based combination therapies (ACTs) are drugs recommended by the World Health Organization for the treatment of uncomplicated malaria. In this thesis, the effect of neutropenia or weight deficiency in the efficacy of these drugs in eliminating current Plasmodium falciparum (parasite causing malaria) infection and preventing reinfection after treatment was investigated.We have conducted clinical trials in which malaria-infected pregnant women and children were treated with various ACTs: artemether - lumefantrine (AL), dihydroartemisinin - piperaquine (DP), artesunate-amodiaquine (ASAQ) or pyronaridine – artesunate (PA) and followed for 42 to 63 days after treatment (according to studies). Based on neutrophil levels in peripheral blood, patients were classified as neutropenic or non-neutropenic.Our data show that pregnancy may induce the production of neutrophils that are subsequently continuously released into the circulation. It’s also suggested that neutropenia may decrease the prophylactic efficacy of AL in pregnant women as well as in children. Contrary to neutropenia, this thesis shows that weight deficiency does not reduce the efficacy of ACTs.The results presented in this thesis elucidate the need to consider patient’s neutrophil levels in the choice of ACTs recommended to treat malaria in pregnant women and children
Host candidate gene polymorphisms and clearance of drug-resistant parasites
Resistance to anti-malarial drugs is a widespread problem for control programmes for this devastating disease. Molecular tests are available for many anti-malarial drugs and are useful tools for the surveillance of drug resistance. However, the correlation of treatment outcome and molecular tests with particular parasite markers is not perfect, due in part to individuals who are able to clear genotypically drug-resistant parasites. This study aimed to identify molecular markers in the human genome that correlate with the clearance of malaria parasites after drug treatment, despite the drug resistance profile of the protozoan as predicted by molecular approaches
Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Mali: a randomised, double-blind, placebo-controlled trial.
BACKGROUND: Previous studies have shown that in areas of seasonal malaria transmission, intermittent preventive treatment of malaria in children (IPTc), targeting the transmission season, reduces the incidence of clinical malaria. However, these studies were conducted in communities with low coverage with insecticide-treated nets (ITNs). Whether IPTc provides additional protection to children sleeping under an ITN has not been established. METHODS AND FINDINGS: To assess whether IPTc provides additional protection to children sleeping under an ITN, we conducted a randomised, double-blind, placebo-controlled trial of IPTc with sulphadoxine pyrimethamine (SP) plus amodiaquine (AQ) in three localities in Kati, Mali. After screening, eligible children aged 3-59 mo were given a long-lasting insecticide-treated net (LLIN) and randomised to receive three rounds of active drugs or placebos. Treatments were administered under observation at monthly intervals during the high malaria transmission season in August, September, and October 2008. Adverse events were monitored immediately after the administration of each course of IPTc and throughout the follow-up period. The primary endpoint was clinical episodes of malaria recorded through passive surveillance by study clinicians available at all times during the follow-up. Cross-sectional surveys were conducted in 150 randomly selected children weekly and in all children at the end of the malaria transmission season to assess usage of ITNs and the impact of IPTc on the prevalence of malaria, anaemia, and malnutrition. Cox regression was used to compare incidence rates between intervention and control arms. The effects of IPTc on the prevalence of malaria infection and anaemia were estimated using logistic regression. 3,065 children were screened and 3,017 (1,508 in the control and 1,509 in the intervention arm) were enrolled in the study. 1,485 children (98.5%) in the control arm and 1,481 (98.1%) in the intervention arm completed follow-up. During the intervention period, the proportion of children reported to have slept under an ITN was 99.7% in the control and 99.3% in intervention arm (p = 0.45). A total of 672 episodes of clinical malaria defined as fever or a history of fever and the presence of at least 5,000 asexual forms of Plasmodium falciparum per microlitre (incidence rate of 1.90; 95% confidence interval [CI] 1.76-2.05 episodes per person year) were observed in the control arm versus 126 (incidence rate of 0.34; 95% CI 0.29-0.41 episodes per person year) in the intervention arm, indicating a protective effect (PE) of 82% (95% CI 78%-85%) (p<0.001) on the primary endpoint. There were 15 episodes of severe malaria in children in the control arm compared to two in children in the intervention group giving a PE of 87% (95% CI 42%-99%) (p = 0.001). IPTc reduced the prevalence of malaria infection by 85% (95% CI 73%-92%) (p<0.001) during the intervention period and by 46% (95% CI 31%-68%) (p<0.001) at the end of the intervention period. The prevalence of moderate anaemia (haemoglobin [Hb] <8 g/dl) was reduced by 47% (95% CI 15%-67%) (p<0.007) at the end of intervention period. The frequencies of adverse events were similar between the two arms. There was no drug-related serious adverse event. CONCLUSIONS: IPTc given during the malaria transmission season provided substantial protection against clinical episodes of malaria, malaria infection, and anaemia in children using an LLIN. SP+AQ was safe and well tolerated. These findings indicate that IPTc could make a valuable contribution to malaria control in areas of seasonal malaria transmission alongside other interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT00738946. Please see later in the article for the Editors' Summary
Saquinavir Inhibits the malaria parasite's chloroquine resistance transporter
The antiretroviral protease inhibitors (APIs) ritonavir, saquinavir, and lopinavir, used to treat HIV infection, inhibit the growth of Plasmodium falciparum at clinically relevant concentrations. Moreover, it has been reported that these APIs potentiate the activity of chloroquine (CQ) against this parasite in vitro. The mechanism underlying this effect is not understood, but the degree of chemosensitization varies between the different APIs and, with the exception of ritonavir, appears to be dependent on the parasite exhibiting a CQ-resistant phenotype. Here we report a study of the role of the P. falciparum chloroquine resistance transporter (PfCRT) in the interaction between CQ and APIs, using transgenic parasites expressing different PfCRT alleles and using the Xenopus laevis oocyte system for the heterologous expression of PfCRT. Our data demonstrate that saquinavir behaves as a CQ resistance reverser and that this explains, at least in part, its ability to enhance the effects of CQ in CQ-resistant P. falciparum parasites. Copyrigh
PlasmoView: a web-based resource to visualise global Plasmodium falciparum genomic variation.
Malaria is a global public health challenge, with drug resistance a major barrier to disease control and elimination. To meet the urgent need for better treatments and vaccines, a deeper knowledge of Plasmodium biology and malaria epidemiology is required. An improved understanding of the genomic variation of malaria parasites, especially the most virulent Plasmodium falciparum (Pf) species, has the potential to yield new insights in these areas. High-throughput sequencing and genotyping is generating large amounts of genomic data across multiple parasite populations. The resulting ability to identify informative variants, particularly single-nucleotide polymorphisms (SNPs), will lead to the discovery of intra- and inter-population differences and thus enable the development of genetic barcodes for diagnostic assays and clinical studies. Knowledge of genetic variability underlying drug resistance and other differential phenotypes will also facilitate the identification of novel mutations and contribute to surveillance and stratified medicine applications. The PlasmoView interactive web-browsing tool enables the research community to visualise genomic variation and annotation (eg, biological function) in a geographic setting. The first release contains over 600,000 high-quality SNPs in 631 Pf isolates from laboratory strains and four malaria-endemic regions (West Africa, East Africa, Southeast Asia and Oceania)
- …
