496 research outputs found
Acceleration and evolution of faults: An example from the Hunter Mountain-Panamint Valley fault zone, Eastern California
We present new space geodetic data indicating that the present slip rate on the Hunter MountainâPanamint Valley fault zone in Eastern California (5.0 ± 0.5 mm/yr) is significantly faster than geologic estimates based on fault total offset and inception time. We interpret this discrepancy as evidence for an accelerating fault and propose a new model for fault initiation and evolution. In this model, fault slip rate initially increases with time; hence geologic estimates averaged over the early stages of the fault\u27s activity will tend to underestimate the present-day rate. The model is based on geologic data (total offset and fault initiation time) and geodetic data (present day slip rate). The model assumes a monotonic increase in slip rate with time as the fault matures and straightens. The rate increase follows a simple Rayleigh cumulative distribution. Integrating the rate-time path from fault inception to present-day gives the total fault offset
Refined kinematics of the Eastern California shear zone from GPS observations, 1993-1998
Global Positioning System (GPS) results from networks spanning the Eastern California shear zone and adjacent Sierra Nevada block, occupied annually between 1993 and 1998, constrain plate margin kinematics. We use an elastic block model to relate GPS station velocities to longâterm fault slip rate estimates. The model accounts for elastic strain accumulation on the San Andreas fault, as well as faults of the Eastern California shear zone. South of the Garlock fault, 14 mm/yr of dextral shear is distributed across the Eastern California shear zone. Some of this slip penetrates eastward into the Basin and Range, and a collective budget of 13 mm/yr is observed to the north at the latitude of Owens Lake. Model slip rates for two important faults, the Garlock and Owens Valley faults, significantly misfit geologic estimates. By referencing station velocities to stable North America we observe northwardâincreasing deformation east of our regional GPS network. At the latitude of Mojave Desert, however, some of this deformation is ascribed to elastic strain accumulation due to a locked San Andreas fault and thus does not represent additional faultârelated, permanent deformation
Constraints on present-day Basin and Range deformation from space geodesy
We use new space geodetic data from very long baseline interferometry and satellite laser ranging combined with other geodetic and geologic data to study contemporary deformation in the Basin and Range province of the western United States. Northwest motion of the central Sierra Nevada block relative to stable North America, a measure of integrated Basin and Range deformation, is 12.1±1.2 mm/yr oriented N38°W±5° (one standard error), in agreement with previous geological estimates within uncertainties. This velocity reflects both east-west extension concentrated in the eastern Basin and Range and north-northwest directed right lateral shear concentrated in the western Basin and Range. Ely, Nevada is moving west at 4.9±1.3 mm/yr relative to stable North America, consistent with dip-slip motion on the north striking Wasatch fault and other north striking normal faults. Comparison with ground-based geodetic data suggests that most of this motion is accommodated within âŒ50 km of the Wasatch fault zone. Paleoseismic data for the Wasatch fault zone and slip rates based on seismic energy release in the region both suggest much lower slip rates. The discrepancy may be explained by some combination of additional deformation away from the Wasatch fault itself, aseismic slip, or a seismic rate that is anomalously low with respect to longer time averages. Deformation in the western Basin and Range province is also largely confined to a relatively narrow boundary zone and in our study area is partitioned into the eastern California shear zone, accommodating 10.7±1.6 mm/yr of north-northwest directed right-lateral shear, and a small component (âŒ1 mm/yr) of west-southwest - east-northeast extension. A slip rate budget for major strike-slip faults in our study area based on a combination of local geodetic or late Quaternary geologic data and the regional space geodetic data suggests the following rates of right-lateral slip: Owens Valley fault zone, 3.9±1.1 mm/yr; Death Valley-Furnace Creek fault zone, 3.3±2.2 mm/yr; White Mountains fault zone in northern Owens Valley, 3.4±1.2 mm/yr; Fish Lake Valley fault zone, 6.2±2.3 mm/yr. In the last few million years the locus of right-lateral shear in the region has shifted west and become more north trending as slip on the northwest striking Death Valley-Furnace Creek fault zone has decreased and is increasingly accommodated on the north-northwest striking Owens Valley fault zone
Seismic cycle and rheological effects on estimation of present-day slip rates for the Agua Blanca and San Miguel-Vallecitos faults, northern Baja California, Mexico
Geodesy can be used to infer long-term fault slip rates, assuming a model for crust and upper mantle rheology. We examine the sensitivity of fault slip rate estimates to assumed rheology for the Agua Blanca and San Miguel-Vallecitos faults in northern Baja California, Mexico, part of the PacificâNorth America plate boundary zone. The Agua Blanca fault is seismically quiet, but offset alluvial fans indicate young activity. Current seismicity is confined to the nearby San Miguel-Vallecitos fault, a small offset fault better aligned with plate motion. GPS measurements between 1993 and 1998 suggest that both faults are active, with a combined slip rate of 4â8 mm yr. regardless of rheological model. However, slip rate estimates for the individual faults are sensitive to assumed rheology. Elastic half-space models yield 2â3 mm yr. for the Agua Blanca fault, and somewhat faster rates for the San Miguel-Vallecitos fault, 2â4 mm yr., with uncertainties of about 1 mm yr. Models incorporating viscoelastic rheology and seismic cycle effects suggest a faster slip rate for the Agua Blanca fault, 6 ± 1 mm yr, and a slower rate for the San Miguel-Vallecitos fault, 1 ± 1 mm yr, in better agreement with geological data, but these rates are sensitive to assumed rheology. Numerical simulations with a finite element model suggest that for similar rheological and friction conditions, slip on the San Miguel-Vallecitos fault should be favored due to better alignment with plate motion. Long-term faulting processes in the larger offset Agua Blanca fault may have lowered slip resistance, allowing accommodation of motion despite misalignment with plate motion
A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome
A follow-up study of a large Utah family with significant linkage to chromosome 2q24 led us to identify a new febrile seizure (FS) gene, SCN9A encoding Na(v)1.7. In 21 affected members, we uncovered a potential mutation in a highly conserved amino acid, p.N641Y, in the large cytoplasmic loop between transmembrane domains I and II that was absent from 586 ethnically matched population control chromosomes. To establish a functional role for this mutation in seizure susceptibility, we introduced the orthologous mutation into the murine Scn9a ortholog using targeted homologous recombination. Compared to wild-type mice, homozygous Scn9a(N641Y/N641Y) knockin mice exhibit significantly reduced thresholds to electrically induced clonic and tonic-clonic seizures, and increased corneal kindling acquisition rates. Together, these data strongly support the SCN9A p.N641Y mutation as disease-causing in this family. To confirm the role of SCN9A in FS, we analyzed a collection of 92 unrelated FS patients and identified additional highly conserved Na(v)1.7 missense variants in 5% of the patients. After one of these children with FS later developed Dravet syndrome (severe myoclonic epilepsy of infancy), we sequenced the SCN1A gene, a gene known to be associated with Dravet syndrome, and identified a heterozygous frameshift mutation. Subsequent analysis of 109 Dravet syndrome patients yielded nine Na(v)1.7 missense variants (8% of the patients), all in highly conserved amino acids. Six of these Dravet syndrome patients with SCN9A missense variants also harbored either missense or splice site SCN1A mutations and three had no SCN1A mutations. This study provides evidence for a role of SCN9A in human epilepsies, both as a cause of FS and as a partner with SCN1A mutations
First GPS Baseline Results from the North Andes
The CASA UNO GPS (Global Positioning System) experiment (January-February 1988) has provided the first epoch baseline measurements for the study of plate motions and crustal deformation in and around the North Andes. Two dimensional horizontal baseline repeatabilities are as good as 5 parts in 108 for short baselines (100-1000km), and better than3 parts in 108 for long baselines (\u3e1000km). Vertical repeatabilities are typically 4 -6 cm, with a weak dependence on baseline length. The expected rate of plate convergence across the Colombia Trench is 6-8 cm/yr, which should be detectable by the repeat experiment planned for 1991. Expected deformation rates within the North Andes are of the order of 1 cm/yr, which may be detectable with the 1991 experiment
Presentâday motion of the Sierra Nevada block and some tectonic implications for the Basin and Range province, North American Cordillera
Global Positioning System (GPS) data from five sites on the stable interior of the Sierra Nevada block are inverted to describe its angular velocity relative to stable North America. The velocity data for the five sites fit the rigid block model with rms misfits of 0.3 mm/yr (north) and 0.8 mm/yr (east), smaller than independently estimated data uncertainty, indicating that the rigid block model is appropriate. The new Euler vector, 17.0°N, 137.3°W, rotation rate 0.28 degrees per million years, predicts that the block is translating to the northwest, nearly parallel to the plate motion direction, at 13â14 mm/yr, faster than previous estimates. Using the predicted Sierra Nevada block velocity as a kinematic boundary condition and GPS, VLBI and other data from the interior and margins of the Basin and Range, we estimate the velocities of some major boundary zone faults. For a transect approximately perpendicular to plate motion through northern Owens Valley, the eastern California shear zone (western boundary of the Basin and Range province) accommodates 11±1 mm/yr of rightâlateral shear primarily on two faults, the Owens ValleyâWhite Mountain (3±2 mm/yr) and Fish Lake Valley (8±2 mm/yr) fault zones, based on a viscoelastic coupling model that accounts for the effects of the 1872 Owens Valley earthquake and the rheology of the lower crust. Together these two faults, separated by less than 50 km on this transect, define a region of high surface velocity gradient on the eastern boundary of the Sierra Nevada block. The Wasatch Fault zone accommodates less than 3±1 mm/yr of eastâwest extension on the eastern boundary of the Basin and Range province. Remaining deformation within the Basin and Range interior is also probably less than 3 mm/yr
InSAR observations of 2007 Tanzania rifting episode reveal mixed fault and dyke extension in an immature continental rift
In the early stages of continental rifting, extension takes place by normal faulting, while in mature continental rifts dyke intrusion dominates. Little is known about the nature of the transition between fault-controlled and dyke-controlled extension or about the processes in an intermediate setting. Here, we present observations of the temporal and spatial evolution of surface displacements during the 2007 July 14âAugust 4 rifting episode in Northern Tanzania, an immature section of the East African Rift. The ground deformation initiated with subsidence that can be attributed to âŒ40 cm of normal motion on a NE striking fault. Following July 17, deformation was dominated by the intrusion of âŒ7-km-long dyke. Dyke opening increased gradually to a total of âŒ2.4 m. From July 21, the collapse of a shallow graben above the fault dominated the near-field displacements. Comparison to the 2007 Dabbahu dyke, Afar, which occurred in a more mature rift, shows an order-of-magnitude scale difference in dyke length. Using numerical models of dyke propagation, we attribute this to the size and depth of the magma chamber; in immature rifts the thick crust and slow spreading rate favour small, deep magma chambers, forming short, buried dykes, whereas in mature rifts the thinner crust and faster spreading rate favour large, shallow magma chambers and long, erupting dykes. Observing the pattern of active processes in the East African Rift is key to understanding the development of rift systems and passive margins elsewhere
- âŠ