3 research outputs found
Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma.
Multiple myeloma is a fatal plasma cell neoplasm accounting for over 10,000 deaths in the United States each year. Despite new therapies, multiple myeloma remains incurable, and patients ultimately develop drug resistance and succumb to the disease. The response to selective CDK4/6 inhibitors has been modest in multiple myeloma, potentially because of incomplete targeting of other critical myeloma oncogenic kinases. As a substantial number of multiple myeloma cell lines and primary samples were found to express AMPK-related protein kinase 5(ARK5), a member of the AMPK family associated with tumor growth and invasion, we examined whether dual inhibition of CDK4 and ARK5 kinases using ON123300 results in a better therapeutic outcome. Treatment of multiple myeloma cell lines and primary samples with ON123300 in vitro resulted in rapid induction of cell-cycle arrest followed by apoptosis. ON123300-mediated ARK5 inhibition or ARK5-specific siRNAs resulted in the inhibition of the mTOR/S6K pathway and upregulation of the AMPK kinase cascade. AMPK upregulation resulted in increased SIRT1 levels and destabilization of steady-state MYC protein. Furthermore, ON123300 was very effective in inhibiting tumor growth in mouse xenograft assays. In addition, multiple myeloma cells sensitive to ON123300 were found to have a unique genomic signature that can guide the clinical development of ON123300. Our study provides preclinical evidence that ON123300 is unique in simultaneously inhibiting key oncogenic pathways in multiple myeloma and supports further development of ARK5 inhibition as a therapeutic approach in multiple myeloma
An Efficient Targeted Drug Delivery through Apotransferrin Loaded Nanoparticles
BACKGROUND: Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. METHODOLOGY/PRINCIPAL FINDINGS: Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano), and showed further increase in dimension (75-95 etam) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression of hepatocellular carcinoma with negligible toxicity to kidney and liver. CONCLUSIONS: The present study thus demonstrates that the direct-nano is highly efficacious in delivery of drug in a target specific manner with lower toxicity to heart, liver and kidney
Abstracts of National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology
This book contains the abstracts of the papers presented at the National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology (NCB4EBT-2021) Organized by the Department of Biotechnology, National Institute of Technology Warangal, India held on 29–30 January 2021. This conference is the first of its kind organized by NIT-W which covered an array of interesting topics in biotechnology. This makes it a bit special as it brings together researchers from different disciplines of biotechnology, which in turn will also open new research and cooperation fields for them.
Conference Title: National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental BiotechnologyConference Acronym: NCB4EBT-2021Conference Date: 29–30 January 2021Conference Location: Online (Virtual Mode)Conference Organizer: Department of Biotechnology, National Institute of Technology Warangal, Indi