35 research outputs found

    REMOTE SENSING DATA ANALYSIS FOR ENVIRONMENTAL AND HUMANITARIAN PURPOSES. The automation of information extraction from free satellite data.

    Get PDF
    This work is aimed at investigating technical possibilities to provide information on environmental parameters that can be used for risk management. The World food Program (WFP) is the United Nations Agency which is involved in risk management for fighting hunger in least-developed and low-income countries, where victims of natural and manmade disasters, refugees, displaced people and the hungry poor suffer from severe food shortages. Risk management includes three different phases (pre-disaster, response and post disaster) to be managed through different activities and actions. Pre disaster activities are meant to develop and deliver risk assessment, establish prevention actions and prepare the operative structures for managing an eventual emergency or disaster. In response and post disaster phase actions planned in the pre-disaster phase are executed focusing on saving lives and secondly, on social economic recovery. In order to optimally manage its operations in the response and post disaster phases, WFP needs to know, in order to estimate the impact an event will have on future food security as soon as possible, the areas affected by the natural disaster, the number of affected people, and the effects that the event can cause to vegetation. For this, providing easy-to-consult thematic maps about the affected areas and population, with adequate spatial resolution, time frequency and regular updating can result determining. Satellite remote sensed data have increasingly been used in the last decades in order to provide updated information about land surface with an acceptable time frequency. Furthermore, satellite images can be managed by automatic procedures in order to extract synthetic information about the ground condition in a very short time and can be easily shared in the web. The work of thesis, focused on the analysis and processing of satellite data, was carried out in cooperation with the association ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action), a center of research which works in cooperation with the WFP in order to provide IT products and tools for the management of food emergencies caused by natural disasters. These products should be able to facilitate the forecasting of the effects of catastrophic events, the estimation of the extension and location of the areas hit by the event, of the affected population and thereby the planning of interventions on the area that could be affected by food insecurity. The requested features of the instruments are: • Regular updating • Spatial resolution suitable for a synoptic analysis • Low cost • Easy consultation Ithaca is developing different activities to provide georeferenced thematic data to WFP users, such a spatial data infrastructure for storing, querying and manipulating large amounts of global geographic information, and for sharing it between a large and differentiated community; a system of early warning for floods, a drought monitoring tool, procedures for rapid mapping in the response phase in a case of natural disaster, web GIS tools to distribute and share georeferenced information, that can be consulted only by means of a web browser. The work of thesis is aimed at providing applications for the automatic production of base georeferenced thematic data, by using free global satellite data, which have characteristics suitable for analysis at a regional scale. In particular the main themes of the applications are water bodies and vegetation phenology. The first application aims at providing procedures for the automatic extraction of water bodies and will lead to the creation and update of an historical archive, which can be analyzed in order to catch the seasonality of water bodies and delineate scenarios of historical flooded areas. The automatic extraction of phenological parameters from satellite data will allow to integrate the existing drought monitoring system with information on vegetation seasonality and to provide further information for the evaluation of food insecurity in the post disaster phase. In the thesis are described the activities carried on for the development of procedures for the automatic processing of free satellite data in order to produce customized layers according to the exigencies in format and distribution of the final users. The main activities, which focused on the development of an automated procedure for the extraction of flooded areas, include the research of an algorithm for the classification of water bodies from satellite data, an important theme in the field of management of the emergencies due to flood events. Two main technologies are generally used: active sensors (radar) and passive sensors (optical data). Advantages for active sensors include the ability to obtain measurements anytime, regardless of the time of day or season, while passive sensors can only be used in the daytime cloud free conditions. Even if with radar technologies is possible to get information on the ground in all weather conditions, it is not possible to use radar data to obtain a continuous archive of flooded areas, because of the lack of a predetermined frequency in the acquisition of the images. For this reason the choice of the dataset went in favor of MODIS (Moderate Resolution Imaging Spectroradiometer), optical data with a daily frequency, a spatial resolution of 250 meters and an historical archive of 10 years. The presence of cloud coverage prevents from the acquisition of the earth surface, and the shadows due to clouds can be wrongly classified as water bodies because of the spectral response very similar to the one of water. After an analysis of the state of the art of the algorithms of automated classification of water bodies in images derived from optical sensors, the author developed an algorithm that allows to classify the data of reflectivity and to temporally composite them in order to obtain flooded areas scenarios for each event. This procedure was tested in the Bangladesh areas, providing encouraging classification accuracies. For the vegetation theme, the main activities performed, here described, include the review of the existing methodologies for phenological studies and the automation of the data flow between inputs and outputs with the use of different global free satellite datasets. In literature, many studies demonstrated the utility of the NDVI (Normalized Difference Vegetation Index) indices for the monitoring of vegetation dynamics, in the study of cultivations, and for the survey of the vegetation water stress. The author developed a procedure for creating layers of phenological parameters which integrates the TIMESAT software, produced by Lars Eklundh and Per Jönsson, for processing NDVI indices derived from different satellite sensors: MODIS (Moderate Resolution Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer) AND SPOT (Système Pour l'Observation de la Terre) VEGETATION. The automated procedure starts from data downloading, calls in a batch mode the software and provides customized layers of phenological parameters such as the starting of the season or length of the season and many others

    REMOTE SENSING DATA ANALYSIS FOR ENVIRONMENTAL AND HUMANITARIAN PURPOSES. The automation of information extraction from free satellite data

    Get PDF
    This work is aimed at investigating technical possibilities to provide information on environmental parameters that can be used for risk management. The World food Program (WFP) is the United Nations Agency which is involved in risk management for fighting hunger in least-developed and low-income countries, where victims of natural and manmade disasters, refugees, displaced people and the hungry poor suffer from severe food shortages. Risk management includes three different phases (pre-disaster, response and post disaster) to be managed through different activities and actions. Pre disaster activities are meant to develop and deliver risk assessment, establish prevention actions and prepare the operative structures for managing an eventual emergency or disaster. In response and post disaster phase actions planned in the pre-disaster phase are executed focusing on saving lives and secondly, on social economic recovery. In order to optimally manage its operations in the response and post disaster phases, WFP needs to know, in order to estimate the impact an event will have on future food security as soon as possible, the areas affected by the natural disaster, the number of affected people, and the effects that the event can cause to vegetation. For this, providing easy-to-consult thematic maps about the affected areas and population, with adequate spatial resolution, time frequency and regular updating can result determining. Satellite remote sensed data have increasingly been used in the last decades in order to provide updated information about land surface with an acceptable time frequency. Furthermore, satellite images can be managed by automatic procedures in order to extract synthetic information about the ground condition in a very short time and can be easily shared in the web. The work of thesis, focused on the analysis and processing of satellite data, was carried out in cooperation with the association ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action), a center of research which works in cooperation with the WFP in order to provide IT products and tools for the management of food emergencies caused by natural disasters. These products should be able to facilitate the forecasting of the effects of catastrophic events, the estimation of the extension and location of the areas hit by the event, of the affected population and thereby the planning of interventions on the area that could be affected by food insecurity. The requested features of the instruments are: • Regular updating • Spatial resolution suitable for a synoptic analysis • Low cost • Easy consultation Ithaca is developing different activities to provide georeferenced thematic data to WFP users, such a spatial data infrastructure for storing, querying and manipulating large amounts of global geographic information, and for sharing it between a large and differentiated community; a system of early warning for floods, a drought monitoring tool, procedures for rapid mapping in the response phase in a case of natural disaster, web GIS tools to distribute and share georeferenced information, that can be consulted only by means of a web browser. The work of thesis is aimed at providing applications for the automatic production of base georeferenced thematic data, by using free global satellite data, which have characteristics suitable for analysis at a regional scale. In particular the main themes of the applications are water bodies and vegetation phenology. The first application aims at providing procedures for the automatic extraction of water bodies and will lead to the creation and update of an historical archive, which can be analyzed in order to catch the seasonality of water bodies and delineate scenarios of historical flooded areas. The automatic extraction of phenological parameters from satellite data will allow to integrate the existing drought monitoring system with information on vegetation seasonality and to provide further information for the evaluation of food insecurity in the post disaster phase. In the thesis are described the activities carried on for the development of procedures for the automatic processing of free satellite data in order to produce customized layers according to the exigencies in format and distribution of the final users. The main activities, which focused on the development of an automated procedure for the extraction of flooded areas, include the research of an algorithm for the classification of water bodies from satellite data, an important theme in the field of management of the emergencies due to flood events. Two main technologies are generally used: active sensors (radar) and passive sensors (optical data). Advantages for active sensors include the ability to obtain measurements anytime, regardless of the time of day or season, while passive sensors can only be used in the daytime cloud free conditions. Even if with radar technologies is possible to get information on the ground in all weather conditions, it is not possible to use radar data to obtain a continuous archive of flooded areas, because of the lack of a predetermined frequency in the acquisition of the images. For this reason the choice of the dataset went in favor of MODIS (Moderate Resolution Imaging Spectroradiometer), optical data with a daily frequency, a spatial resolution of 250 meters and an historical archive of 10 years. The presence of cloud coverage prevents from the acquisition of the earth surface, and the shadows due to clouds can be wrongly classified as water bodies because of the spectral response very similar to the one of water. After an analysis of the state of the art of the algorithms of automated classification of water bodies in images derived from optical sensors, the author developed an algorithm that allows to classify the data of reflectivity and to temporally composite them in order to obtain flooded areas scenarios for each event. This procedure was tested in the Bangladesh areas, providing encouraging classification accuracies. For the vegetation theme, the main activities performed, here described, include the review of the existing methodologies for phenological studies and the automation of the data flow between inputs and outputs with the use of different global free satellite datasets. In literature, many studies demonstrated the utility of the NDVI (Normalized Difference Vegetation Index) indices for the monitoring of vegetation dynamics, in the study of cultivations, and for the survey of the vegetation water stress. The author developed a procedure for creating layers of phenological parameters which integrates the TIMESAT software, produced by Lars Eklundh and Per Jönsson, for processing NDVI indices derived from different satellite sensors: MODIS (Moderate Resolution Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer) AND SPOT (Système Pour l'Observation de la Terre) VEGETATION. The automated procedure starts from data downloading, calls in a batch mode the software and provides customized layers of phenological parameters such as the starting of the season or length of the season and many other

    Rapid Mapping: geomatics role and research opportunities

    Get PDF
    In recent years an increasing number of extreme meteorological events have been recorded. Geomatics techniques have been historically adopted to support the different phases of the Emergency Management cycle with a main focus on emergency response, initial recovery and preparedness through the acquisition, processing, management and dissemination of geospatial data. In the meantime, the increased availability of geospatial data in terms of reference topographic datasets, made available by authoritative National Mapping Cadastre Agencies or by Collaborative Mapping initiatives like OpenStreetMap, as well as of remotely sensed imagery, poses new challenges to the Geomatics role in defining operational tools and services in support of emergency management activities. This paper is mainly focused on the role of Geomatics in supporting the response phase of the Emergency Management cycle through Rapid Mapping activities, which can be defined as “the on-demand and fast provision (within hours or days) of geospatial information in support of emergency management activities immediately following an emergency event” (source: European Union, http://emergency.copernicus.eu/mapping/ems/service-overview). Management of geospatial datasets (both reference and thematic), Remote Sensing sensors and techniques and spatial information science methodologies applied to Rapid Mapping will be described, with the goal to highlight the role that Geomatics is currently playing in this domain. The major technical requirements, constraints and research opportunities of a Rapid Mapping service will be discussed, with a specific focus on: the time constraints of the service, the data quality requirements, the need to provide replicable products, the need for consistent data models, the advantages of data interoperability, the automation of feature extraction procedures to reduce the need for Computer Aided Photo Interpretation, the dissemination strategies

    Improving an Extreme Rainfall Detection System with GPM IMERG data

    Get PDF
    Many studies have shown a growing trend in terms of frequency and severity of extreme events. As never before, having tools capable to monitor the amount of rain that reaches the Earth’s surface has become a key point for the identification of areas potentially affected by floods. In order to guarantee an almost global spatial coverage, NASA Global Precipitation Measurement (GPM) IMERG products proved to be the most appropriate source of information for precipitation retrievement by satellite. This study is aimed at defining the IMERG accuracy in representing extreme rainfall events for varying time aggregation intervals. This is performed by comparing the IMERG data with the rain gauge ones. The outcomes demonstrate that precipitation satellite data guarantee good results when the rainfall aggregation interval is equal to or greater than 12 h. More specifically, a 24-h aggregation interval ensures a probability of detection (defined as the number of hits divided by the total number of observed events) greater than 80%. The outcomes of this analysis supported the development of the updated version of the ITHACA Extreme Rainfall Detection System (ERDS: erds.ithacaweb.org). This system is now able to provide near real-time alerts about extreme rainfall events using a threshold methodology based on the mean annual precipitation

    Urban detection using Decision Tree classifier: a case study

    Get PDF
    This work constitutes a first step towards the definition of a methodology for automatic urban extraction from medium spatial resolution Landsat data. Decision Tree is investigated as classification technique due to its ability in establishing which is the most relevant information to be used for the classification process and its capability of extracting rules that can be further ap-plied to other inputs. The attention was focused on the evaluation of parameters that better define the training set to be used for the learning phase of the classifier since its definition affects all the next steps of the process. Different training sets were created by combining different features, such as different level of radiometric pre-processing applied to the input images, the number of classes considered to train the classifier, the temporal extent of the training set and the use of different at-tributes (bands or spectral indexes). Different post-processing techniques were also evaluated. Classifiers, obtained by the generated training sets, were evaluated in two different areas of Pied-mont Region, where the official regional cartography at scale 1:10000 was used for validation. Accuracies round 81% in the Torino case study and around 96%-97% in Asti case study were reached, thanks to the use of indexes such as NDVI and NDBBBI and the use of post-processing such as majority filtering that allowed enhancing classifier performance

    EARLY IMPACT PROCEDURES FOR FLOOD EVENTSFEBRUARY 2007 MOZAMBIQUE FLOOD

    Get PDF
    Satellite images and GIS procedures are key elements for emergency management, especially in case of events hitting developing countries, more vulnerable to calamities and less prepared to face them. This article aims to show the procedure applied for the pro-duction of a cartography of flooded areas during the early impact phase; these activities are developed within ITHACA, centre of excellence, in charge of giving technological support to the WFP (World Food Programme), the biggest agency of the UN. The flood in Mozambique, occurred in January 2007, is illustrated as an example of events management
    corecore