10 research outputs found
Characterisation of ground motion recording stations in the Groningen gas field
The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (VS). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ VS values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed VS profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent VS information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative VS profiles at the accelerograph station sites. The measured VS profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the VS profile and the observed amplification from vertical array stations is also excellent
Characterisation of ground motion recording stations in the Groningen gas field
The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (VS). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ VS values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed VS profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent VS information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative VS profiles at the accelerograph station sites. The measured VS profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the VS profile and the observed amplification from vertical array stations is also excellent
An integrated shear-wave velocity model for the Groningen gas field, The Netherlands
A regional shear-wave velocity (VS) model has been developed for the Groningen gas field in the Netherlands as the basis for seismic microzonation of an area of more than 1000 km2. The VS model, extending to a depth of almost 1 km, is an essential input to the modelling of hazard and risk due to induced earthquakes in the region. The detailed VS profiles are constructed from a novel combination of three data sets covering different, partially overlapping depth ranges. The uppermost 50 m of the VS profiles are obtained from a high-resolution geological model with representative VS values assigned to the sediments. Field measurements of VS were used to derive representative VS values for the different types of sediments. The profiles from 50 to 120 m are obtained from inversion of surface waves recorded (as noise) during deep seismic reflection profiling of the gas reservoir. The deepest part of the profiles is obtained from sonic logging and VP–VS relationships based on measurements in deep boreholes. Criteria were established for the splicing of the three portions to generate continuous models over the entire depth range for use in site response calculations, for which an elastic half-space is assumed to exist below a clear stratigraphic boundary and impedance contrast encountered at about 800 m depth. In order to facilitate fully probabilistic site response analyses, a scheme for the randomisation of the VS profiles is implemented.Geo-engineerin