86 research outputs found

    Dopaminergic, glutamatergic but not opioidergic mechanisms mediate induction of FOS-like protein by cocaethylene

    Get PDF
    Cocaethylene is a psychoactive metabolite formed\ud during the combined consumption of cocaine and ethanol. As\ud this metabolite has many properties in common with cocaine, it is conceivable that cocaethylene administration may induce the activity of nuclear transcription factors that regulate the expression of late-response genes. Therefore, the temporal induction of FOS-like protein in rat brain was examined following IP administration of 60 mmol/kg cocaethylene. Immunoreactivity for the protein was detectable at 1 h in striatal neurons and had virtually disappeared 6 h after drug treatment. Administration of\ud specific dopaminergic (SCH-23390; 0.5 mg/kg) and glutamatergic (MK-801; 1 mg/kg) receptor antagonists prior to cocaethylene indicated a significant role for dopamine (D1) and Nmethyl-D-aspartate receptor subtypes in mediating the nuclear induction of the aforementioned transcription factor protein. In contrast, no significant effects on FOS-like protein in discrete neurons of the caudate putamen were found when spiradoline (U-62066), a kappa opioid-receptor agonist, was administered either IP (10 mg/kg) or directly (50 nmol) into the brain parenchyma. In addition, we uncovered a differential sensitivity of Long–Evans rats to the behavioral effects of cocaethylene, with the psychoactive metabolite producing significantly less behavioral activity (e.g., locomotion, rearing, and continuous sniffing)than that produced by cocaine (molar equivalent of 60 mmol/kg cocaethylene). These findings indicate both common and disparate effects of cocaethylene and its parent compound, cocaine, on receptor pathways that regulate target alterations in gene expression and drug-induced motor behavior

    Performance Testing of the Astro-H Flight Model 3-Stage ADR

    Get PDF
    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon micro calorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASAGSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This presentation summarizes the performance of the flight ADR in both cryogen-based and cryogen-free operating modes

    Longitudinal phase-space manipulation with beam-driven plasma wakefields

    Full text link
    The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical and research applications. The ability to shape the beam longitudinal phase-space, in particular, plays a key role to achieve high-peak brightness. Here we present a new approach that allows to tune the longitudinal phase-space of a high-brightness beam by means of a plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators

    The External-Injection experiment at the SPARC_LAB facility

    Get PDF
    At the SPARC_LAB facility of INFN-LNF we are installing a transport lines for ultra-short electron bunches and another for ultra-intense laser pulses,generated by the SPARC photo-injector and by the FLAME laser in asynchronized fashion at the tens of fs level,to co-propagate inside a hydrogen filled glass capillary,in order to perform acceleration of the electron bunch by a plasma wave driven by the laser pulse.The main aim of this experiment is to demonstrate that a high brightness electron beam can be accelerated by a plasma wave without any significant degradation of its quality.Motivations of the technical choices are made and expected performances are reporte

    Operation of an ADR Using Helium Exchange Gas as a Substitute for a Failed Heat Switch

    Get PDF
    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature

    First single-shot and non-intercepting longitudinal bunch diagnostics for comb-like beam by means of Electro-Optic Sampling

    Get PDF
    At SPARC-LAB,we have installed an Electro-Optic Sampling(EOS)experiment for single shot,non- destructive measurements of the longitudinal distribution charge of individual electron bunches.The profile of the electron bunch field is electro-optically encoded into aTi:Sa laser, having 130fs(rms)pulse length, directly derived from the photocathode's laser. The bunch profile information is spatially retrieved,i.e.,the laser crosses with an angle of 30 degrees with respect to the normal to the surface of EO crystal(ZnTe,GaP)and the bunch longitudinal profile is mapped into the laser's transverse profile. In particular,we used the EOS for a single-shot direct visualization of the time profile of a comb-like electron beam,consisting of two bunches, about 100fs(rms)long,sub-picosecond spaced with a total charge of 160pC. The electro-optic measurements(done with both ZnTe and GaP crystals)have been validated with both RF Deflector (RFD)and Michelson interferometer measurements

    Optical Design of the Origins Space Telescope

    Get PDF
    This paper discusses the optical design of the Origins Space Telescope. Origins is one of four large missions under study in preparation for the 2020 Decadal Survey in Astronomy and Astrophysics. Sensitive to the mid- and far-infrared spectrum (between 2.8 and 588 m), Origins sets out to answer a number of important scientific questions by addressing NASAs three key science goals in astrophysics. The Origins telescope has a 5.9 m diameter primary mirror and operates at f/14. The large on-axis primary consists of 18 keystone segments of two different prescriptions arranged in two annuli (six inner and twelve outer segments) that together form a circular aperture in the goal of achieving a symmetric point spread function. To accommodate the 46 x 15 arcminute full field of view of the telescope at the design wavelength of = 30 m, a three-mirror anastigmat configuration is used. The design is diffraction-limited across its instruments fields of view. A brief discussion of each of the three baselined instruments within the Instrument Accommodation Module (IAM) is presented: 1) Origins Survey Spectrometer (OSS), 2) Mid-infrared Spectrometer, Camera (MISC) transit spectrometer channel, and 3) Far-Infrared Polarimeter/Imager (FIP). In addition, the up scope options for the observatory are laid out as well including a fourth instrument: the Heterodyne Receiver for Origins (HERO)

    The PLASMONX Project for advanced beam physics experiments

    Get PDF
    The Project PLASMONX is well progressing into its design phase and has entered as well its second phase of procurements for main components. The project foresees the installation at LNF of a Ti:Sa laser system (peak power > 170 TW), synchronized to the high brightness electron beam produced by the SPARC photo-injector. The advancement of the procurement of such a laser system is reported, as well as the construction plans of a new building at LNF to host a dedicated laboratory for high intensity photon beam experiments (High Intensity Laser Laboratory). Several experiments are foreseen using this complex facility, mainly in the high gradient plasma acceleration field and in the field of mono- chromatic ultra-fast X-ray pulse generation via Thomson back-scattering. Detailed numerical simulations have been carried out to study the generation of tightly focused electron bunches to collide with laser pulses in the Thomson source: results on the emitted spectra of X-rays are presented
    • …
    corecore