43 research outputs found

    Physical Exercise Reduces Circulating Lipopolysaccharide and TLR4 Activation and Improves Insulin Signaling in Tissues of DIO Rats

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)OBJECTIVE-Insulin resistance in diet-induced obesity (DIO) is associated with a chronic systemic low-grade inflammation, and Toll-like receptor 4 (TLR4) plays an important role in the link among insulin resistance, inflammation, and obesity. The current study aimed to analyze the effect of exercise on TLR4 expression and activation in obese rats and its consequences on insulin sensitivity and signaling. RESEARCH DESIGN AND METHODS-The effect of chronic and acute exercise was investigated on insulin sensitivity, insulin signaling, TLR4 activation, c-Jun NH(2)-terminal kinase (JNK) and I kappa B kinase (IKK beta) activity, and lipopolysaccharide (LPS) serum levels in tissues of DIO rats. RESULTS-The results showed that chronic exercise reduced TLR4 mRNA and protein expression in liver, muscle, and adipose tissue. However, both acute and chronic exercise blunted TLR4 signaling in these tissues, including a reduction in JNK and IKK beta phosphorylation and IRS-1 serine 307 phosphorylation, and, in parallel, improved insulin-induced IR, IRS-1 tyrosine phosphorylation, and Akt serine phosphorylation, and reduced LPS serum levels. CONCLUSIONS-Our results show that physical exercise in DIO rats, both acute and chronic, induces an important suppression in the TLR4 signaling pathway in the liver, muscle, and adipose tissue, reduces LPS serum levels, and improves insulin signaling and sensitivity. These data provide considerable progress in our understanding of the molecular events that link physical exercise to an improvement in inflammation and insulin resistance. Diabetes 60:784-796, 2011603784796Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de PesquisaINCT-Obesidade e DiabetesFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Insulin Resistance in HIV-Patients: Causes and Consequences

    Get PDF
    Here we review how immune activation and insulin resistance contribute to the metabolic alterations observed in HIV-infected patients, and how these alterations increase the risk of developing CVD. The introduction and evolution of antiretroviral drugs over the past 25 years has completely changed the clinical prognosis of HIV-infected patients. The deaths of these individuals are now related to atherosclerotic CVDs, rather than from the viral infection itself. However, HIV infection, cART, and intestinal microbiota are associated with immune activation and insulin resistance, which can lead to the development of a variety of diseases and disorders, especially with regards to CVDs. The increase in LPS and proinflammatory cytokines circulating levels and intracellular mechanisms activate serine kinases, resulting in insulin receptor substrate-1 (IRS-1) serine phosphorylation and consequently a down regulation in insulin signaling. While lifestyle modifications and pharmaceutical interventions can be employed to treat these altered metabolic functions, the mechanisms involved in the development of these chronic complications remain largely unresolved. The elucidation and understanding of these mechanisms will give rise to new classes of drugs that will further improve the quality of life of HIV-infected patients, over the age of 50

    The role of gut-liver axis in the restriction of intrauterine growth in a model of experimental gastroschisis

    Full text link
    PURPOSE: To evaluate the intrauterine growth restriction (IUGR) by the expression of IR-&#946;, IRS-1, IRS-2, IGF-IR&#946; and Ikappa&#946; in experimental model of gastroschisis. METHODS: Pregnant rats at 18.5 days of gestation were submitted to surgery to create experimental fetal gastroschisis (term = 22 days) were divided in three groups: gastroschisis (G), control (C) and sham (S). Fetuses were evaluated for body weight (BW), intestinal (IW), liver (LW) and their relations IW/BW and LW/BW. IR-&#946; and IGF-IR&#946; receptors, IRS-1 and IRS-2 substrates and Ikappa&#946; protein were analyzed by western blotting. RESULTS: BW was lower in G, the IW and IW / BW were greater than C and S (p<0.05) groups. The liver showed no differences between groups. In fetuses with gastroschisis, compared with control fetuses, the expression of IGF-IR&#946; (p<0.001) and Ikappa&#946; (p<0.001) increased in the liver and intestine, as well as IR-&#946; (p<0.001) which decreased in both. In contrast to the intestine, IRS-1 (p<0.001) increased in the liver and IRS-2 decreased (p<0.01). CONCLUSION: The axis of the intestine liver has an important role in inflammation, with consequent changes in the metabolic pathway of glucose can contribute to the IUGR in fetuses with gastroschisis

    Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice

    Get PDF
    Accumulating evidence has demonstrated that S-nitrosation of proteins plays a critical role in several human diseases. Here, we explored the role of inducible nitric oxide synthase (iNOS) in the S-nitrosation of proteins involved in the early steps of the insulin-signaling pathway and insulin resistance in the skeletal muscle of aged mice. Aging increased iNOS expression and S-nitrosation of major proteins involved in insulin signaling, thereby reducing insulin sensitivity in skeletal muscle. Conversely, aged iNOS-null mice were protected from S-nitrosation–induced insulin resistance. Moreover, pharmacological treatment with an iNOS inhibitor and acute exercise reduced iNOS-induced S-nitrosation and increased insulin sensitivity in the muscle of aged animals. These findings indicate that the insulin resistance observed in aged mice is mainly mediated through the S-nitrosation of the insulin-signaling pathway

    Atorvastatin Improves Survival in Septic Rats: Effect on Tissue Inflammatory Pathway and on Insulin Signaling

    Get PDF
    The aim of the present study was to investigate whether the survival-improving effect of atorvastatin in sepsis is accompanied by a reduction in tissue activation of inflammatory pathways and, in parallel, an improvement in tissue insulin signaling in rats. Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Serum glucose and inflammatory cytokines levels were assessed 24 h after CLP. The effect of atorvastatin on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle and adipose tissue. Atorvastatin improves survival in septic rats and this improvement is accompanied by a marked improvement in insulin sensitivity, characterized by an increase in glucose disappearance rate during the insulin tolerance test. Sepsis induced an increase in the expression/activation of TLR4 and its downstream signaling JNK and IKK/NF-κB activation, and blunted insulin-induced insulin signaling in liver, muscle and adipose tissue; atorvastatin reversed all these alterations in parallel with a decrease in circulating levels of TNF-α and IL-6. In summary, this study demonstrates that atorvastatin treatment increased survival, with a significant effect upon insulin sensitivity, improving insulin signaling in peripheral tissues of rats during peritoneal-induced sepsis. The effect of atorvastatin on the suppression of the TLR-dependent inflammatory pathway may play a central role in regulation of insulin signaling and survival in sepsis insult

    Hypothalamic Socs-3 Expression And The Effect Of Intracerebroventricular Angiotensin Ii Injection On Water Intake And Renal Sodium Handling In Shr.

    No full text
    In rats, the acute central dipsogenic and natriuretic action of angiotensin II (AngII) seems to be independent of the hemodynamic effects of the peptide; however, in genetically hypertensive models, this relationship has not yet been investigated. It has been demonstrated that AngII induces the suppressor of cytokine signaling (SOCS-3) expression in the brain that, in turn, modulates further activation of the pathway, leading to desensitization to AngII stimuli with regard to its dipsogenic effect. This study investigates age-related Janus kinase (JAK-2) and SOCS-3 hypothalamic expression, by immunoblotting, and the involvement of SOCS-3 expression in urinary sodium handling and dipsogenic response in spontaneously hypertensive rats (SHR), compared with age-matched Wistar-Kyoto (WKy) rats. The intracerebroventricular (i.c.v.) application of AngII significantly enhanced the dipsogenic response, reduced C(Cr), and reciprocally promoted increased absolute and fractional rates of excretion of sodium in WKy rats. The central AngII-induced dipsogenic effect in WKy and SHR was significantly attenuated by prior i.c.v. administration of DUP753. In addition, the magnitude of the dipsogenic and renal response to AngII was significantly attenuated in age-matched SHR. Blocking of hypothalamic SOCS-3 expression by an antisense oligonucleotide resulted in partial reversal of the refractory nature of AngII in thirst responses in SHR. The altered centrally applied AngII response in SHR associated with increased hypothalamic JAK-2/SOCS-3 expression may suggest that abnormal regulation of the central angiotensin pathways may contribute to dysfunction of water-electrolyte homeostasis in SHR.60425-3

    Assessment of the Expression of IR beta, IRS-1, IRS-2 and IGF-IR beta in a Rat Model of Intrauterine Growth Restriction

    No full text
    Objective: To investigate glomerular development and expression of insulin and insulin-like growth factor receptors in an experimental model of intrauterine growth restriction (IUGR). Material and Methods: We studied three groups of Sprague-Dawley fetuses: IUGR - restricted by ligation of the right uterine artery; C-IUGR - left horn controls, and EC - external controls (non-manipulated). Body and organs were weighed, and glomerular number and volume were analyzed. Expression of IR beta, IRS-1, IRS-2 and IGF-IR beta was analyzed in liver, intestine and kidneys by immunoblotting. Results: Organ/body weight ratios were similar. In IUGR, glomerular number and volume were increased compared to C-IUGR and EC (p < 0.001). In the IUGR liver, increases were found in IGF-IR beta compared to C-IUGR and EC; IR beta compared to EC, and IRS-2 compared to C-IUGR. However, decreases in IR beta were noted in IUGR compared to C-IUGR; IRS-1 compared to C-IUGR and EC, and IRS-2 compared to EC. In IUGR intestine, increases were detected in IR beta, IRS-1 and IGF-IR beta compared to C-IUGR and EC. In IUGR kidneys, increases were observed in IR beta and IGF-IR beta compared to C-IUGR and EC, and IRS-1 compared to EC. Decreased IRS-2 in the intestine and kidney were noticed in IUGR compared to C-IUGR and EC. Conclusion: IUGR fetuses had less glomeruli and alterations in insulin receptors, which may be associated with an increased risk of disease occurrence in adulthood. Copyright (C) 2010 S. Karger AG, BaselFAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - Sao Paulo Research Foundation)[08/51487-9
    corecore