15 research outputs found

    The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honeybee pathogen Paenibacillus larvae

    Get PDF
    Here, we report that a novel nucleobase cation symporter 2 encoded in the genome of the honeybee bacterial pathogen Paenibacillus larvae reveals high levels of amino acid sequence similarity to the Escherichia coli and Bacillus subtilis uric acid and xanthine transporters. This transporter is named P. larvae uric acid permease-like protein (PlUacP). Even though PlUacP displays overall amino acid sequence similarities, has common secondary structures, and shares functional motifs and functionally important amino acids with E. coli xanthine and uric acid transporters, these commonalities are insufficient to assign transport function to PlUacP. The solute transport and binding profile of PlUacP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUacP transports the purines adenine and guanine and the pyrimidine uracil. Hypoxanthine, xanthine, and cytosine are not transported by PlUacP, but, along with uric acid, bind in a competitive manner. PlUacP has strong affinity for adenine Km 7.04 ± 0.18 μm, and as with other bacterial and plant NCS2 proteins, PlUacP function is inhibited by the proton disruptor carbonyl cyanide m-chlorophenylhydrazone. The solute transport and binding profile identifies PlUacP as a novel nucleobase transporter

    Complete Genome Sequences of Paenibacillus Larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana

    Get PDF
    We present here the complete genomes of eight phages that infect Paenibacillus larvae, the causative agent of American foulbrood in honeybees. Phage PBL1c was originally isolated in 1984 from a P. larvae lysogen, while the remaining phages were isolated in 2014 from bee debris, honeycomb, and lysogens from three states in the USA

    Standard methods for American foulbrood research

    Get PDF
    American foulbrood is one of the most devastating diseases of the honey bee. It is caused by the spore-forming, Gram-positive rod-shaped bacterium Paenibacillus larvae. The recent updated genome assembly and annotation for this pathogen now permits in-depth molecular studies. In this paper, selected techniques and protocols for American foulbrood research are provided, mostly in a recipe-like format that permits easy implementation in the laboratory. Topics covered include: working with Paenibacillus larvae, basic microbiological techniques, experimental infection, and “’omics” and other sophisticated techniques. Further, this chapter covers other technical information including biosafety measures to guarantee the safe handling of this pathogen

    美洲幼虫腐臭病研究的标准方法

    No full text
    American foulbrood is one of the most devastating diseases of the honey bee. It is caused by the spore-forming, Gram-positive rod-shaped bacterium Paenibacillus larvae. The recent updated genome assembly and annotation for this pathogen now permits in-depth molecular studies. In this paper, selected techniques and protocols for American foulbrood research are provided, mostly in a recipe-like format that permits easy implementation in the laboratory. Topics covered include: working with Paenibacillus larvae, basic microbiological techniques, experimental infection, and “’omics” and other sophisticated techniques. Further, this chapter covers other technical information including biosafety measures to guarantee the safe handling of this pathogen.La loque americana es una de las enfermedades más devastadoras de la abeja melífera, causada por el bacilo, formador de esporas Gram-positivo Paenibacillus larvae. El reciente ensamblaje y anotación del genoma de este patógeno permite actualmente la realización de profundos estudios moleculares. En este trabajo, se proporcionan técnicas y protocolos seleccionados para la investigación de la loque americana, principalmente bajo la forma de protocolos de trabajo con una estructura similar al de las recetas, para facilitar su implementación en el laboratorio. Los temas desarrollados incluyen: el trabajo con Paenibacillus larvae, técnicas básicas microbiológicas, la infección experimental, y "'ómicas" y otras técnicas sofisticadas. Además, este capítulo abarca otro tipo de información técnica, incluyendo medidas de bioseguridad para garantizar la seguridad en el manejo de este patógeno.美洲幼虫腐臭病是最具毁灭性的疾病之一,由革兰氏阳性杆状菌 Paenibacillus larvae 引起。近年来,随着基因组学的开展,该病原体的基因组组装和注释已成为开展,深入的分子研究成为可能。本文提供了经选择的美洲幼虫腐臭病研究技术和实验程序,大多数以“食谱”的格式给出, 很容易在实验室开展操作。覆盖的主题包括:Paenibacillus larvae 的处理技术,基本微生物技术、实验感染技术、“组学”以及其他的一些复杂技术。此外,本章还包含了生物安全的评价方法,以确保安全的开展该病原体的研究The Research Foundation of Flanders (FWO-Vlaanderen; G.0163.11)http://www.ibra.org.uk/categories/jaram201

    Modelling rainfall and canopy controls on net-precipitation beneath selectively-logged tropical forest.

    No full text
    Understanding spatio-temporal patterns in rainfall received beneath tropical forest is required for eco- hydrological modelling of soil-water status, river behaviour, soil erosion, nutrient loss and wet-canopy evaporation. As selective-logging of tropical forest leaves a very complex mosaic of canopy types, it is likely to add to the spatio-temporal complexity of this sub-canopy or net precipitation. As a precursor to addressing this problem, the analysis presented here will examine the two dominant biophysical controls on sub-canopy precipitation. These controls are: (a) the spatial and temporal patterns in above-canopy or gross rainfall, and (b) the rate of wet-canopy evaporation associated with each type of canopy structure created by selective-forestry. For this study, over 400 raingauges were installed within a 10 km2 area of lowland dipterocarp forest affected by selective-forestry some 9-years prior to this work. Gauges were located beneath various canopy types and within large openings. The spatial distribution of gross rainfall (monitored within the openings) was modelled using variography, while the effects of different canopy types on sub-canopy preciptation was analysed by comparing 6-month totals. The temporal distribution of gross rainfall over an 11-year record collected at the same site (Danum Valley Field Centre) was modelled with Data-Based-Mechanistic (DBM) approaches. These DBM approaches were also applied to the rainfall time-series of the two adjacent meteorological stations; all three gauges being contained within a 5000 km2 region of Eastern Sabah in Malaysian Borneo. Strong diurnal modulation was apparent within gross rainfall for the inland rainforest site, with a distribution consistent with a dominance of local convective rain cells. A similarly strong cycle coincident with the periodicity of the El Niño-Southern Oscillation (ENSO) was present within all of the region's rainfall records, though marked differences in annual and intra-annual seasonality were apparent. The preliminary variogram modelling indicated that a deterministic drift was present within the local-scale gross rainfall data, probably related to local topographic effects. Notwithstanding the need to remove this drift, the work indicated that spatial models of gross rainfall could be identified and used to interpret similar models of net-precipitation. During the ENSO drought-period monitored, the lowland dipterocarp forest allowed 91% of the gross rainfall to reach the ground as throughfall. These rates were, however, reduced to between 80%–86% beneath representative plots of moderately impacted to creeper-covered, highly damaged patches of forest
    corecore