50 research outputs found

    Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening.

    Get PDF
    There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either ‘conventional’ or ‘green’, as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the ‘green’ fluids are less harmful than the ‘conventional’ ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the ‘green’ and ‘conventional’ fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids

    Cyber Security: China and Russia\u27s Erosion of 21st Century United States\u27 Hegemony

    Get PDF
    With Russia and China emerging as challengers to U.S. hegemony, the use of cyber warfare could tilt the current balance of power in either of their favors. Using various methods, hackers can acquire sensitive information and destroy online infrastructures. In the development of cyber warfare, China has become a seasoned veteran with computer virus operations dating back to 199714. Russia has emerged as a cyber aggressor, as seen in Russia’s cyber attacks on several countries in the last decade. This paper argues that, with the growth of foreign cyber technology, the probability of cyberspace being used as a military front by state or non-state actors against the United States increases

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167∘\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135∘\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Pre-cachexia in patients with stages I-III non-small cell lung cancer: Systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.

    Get PDF
    AbstractCachexia is a prevalent phenomenon of non-small cell lung cancer (NSCLC) which is responsible for increased mortality and deterioration of physical performance. Preclinical research indicates that systemic inflammation induces cachexia-related muscle wasting through muscular Nuclear Factor-kappa B (NF-κB) signaling and subsequent ubiquitin proteasome system (UPS)-mediated proteolysis. As these pathways could be a target for early intervention strategies, it needs to be elucidated whether increased activation of these pathways is already present in early stage NSCLC cachexia. The aim of the present study was therefore to assess muscular NF-κB and UPS activation in patients with NSCLC pre-cachexia.Sixteen patients with newly diagnosed stages I–III NSCLC having <10% weight loss and ten healthy controls were studied. Body composition, systemic inflammation and exercise capacity were assessed in all subjects and NF-κB and UPS activity in vastus lateralis muscle biopsies in a subset.Patients showed increased plasma levels of C-reactive protein (CRP) (P<0.001), soluble Tumor Necrosis Factor receptor 1 (sTNF-R1) (P<0.05), fibrinogen (P<0.001) and decreased levels of albumin (P<0.001). No changes in fat free body mass or skeletal muscle NF-κB and UPS activity were observed, while peak oxygen consumption (V˙O2 peak) was significantly decreased in patients compared with healthy controls.In conclusion, this exploratory study demonstrates significantly reduced exercise capacity in NSCLC pre-cachexia despite maintenance of muscle mass and unaltered indices of UPS activation. The absence of muscular NF-κB-dependent inflammatory signaling supports the notion that transition of systemic to local inflammation is required to initiate UPS-dependent muscle wasting characteristic for (experimental) cachexia

    Computed tomography-based radiomics for the differential diagnosis of pneumonitis in stage IV non-small cell lung cancer patients treated with immune checkpoint inhibitors

    Get PDF
    Introduction: Immunotherapy-induced pneumonitis (IIP) is a serious side-effect which requires accurate diagnosis and management with high-dose corticosteroids. The differ-ential diagnosis between IIP and other types of pneumonitis (OTP) remains challenging due to similar radiological patterns. This study was aimed to develop a prediction model to differentiate IIP from OTP in patients with stage IV non-small cell lung cancer (NSCLC) who developed pneumonitis during immunotherapy. Methods: Consecutive patients with metastatic NSCLC treated with immunotherapy in six centres in the Netherlands and Belgium from 2017 to 2020 were reviewed and cause-specific pneumonitis events were identified. Seven regions of interest (segmented lungs and sphe-roidal/cubical regions surrounding the inflammation) were examined to extract the most pre-dictive radiomic features from the chest computed tomography images obtained at pneumonitis manifestation. Models were internally tested regarding discrimination, calibra-tion and decisional benefit. To evaluate the clinical application of the models, predicted labels were compared with the separate clinical and radiological judgements. Results: A total of 556 patients were reviewed; 31 patients (5.6%) developed IIP and 41 pa-tients developed OTP (7.4%). The line of immunotherapy was the only predictive factor in the clinical model (2nd versus 1st odds ratio Z 0.08, 95% confidence interval:0.01-0.77). The best radiomic model was achieved using a 75-mm spheroidal region of interest which showed an optimism-corrected area under the receiver operating characteristic curve of 0.83 (95% confidence interval:0.77-0.95) with negative and positive predictive values of 80% and 79%, respectively. Good calibration and net benefits were achieved for the radiomic model across the entire range of probabilities. A correct diagnosis was provided by the radiomic model in 10 out of 12 cases with non-conclusive radiological judgements. Conclusion: Radiomic biomarkers applied to computed tomography imaging may support cli-nicians making the differential diagnosis of pneumonitis in patients with NSCLC receiving immunotherapy, especially when the radiologic assessment is non-conclusive. 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Pathogenesis and treatment of chronic pulmonary disease

    Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer

    Get PDF
    Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone
    corecore