13 research outputs found
Study on the Process and Mechanism of Slope Failure Induced by Mining under Open Pit Slope: A Case Study from Yanqianshan Iron Mine, China
Mining under an open pit slope results in the collapse and slide of the slope. In this paper, a combination of methods including Google Earth and field investigations is applied to investigate the process of eastern slope failure induced by underground mining in the Yanqianshan Iron Mine over five years. According to the observed ground deformation features, the geomorphic zone of the eastern slope can be divided into four regions (caved rock zone, cracking zone, toppling zone, and sliding zone). Break angles and fracture initiation angles at different times are counted separately. Based on the above work, the process of initiation and development of slope failure is studied. The analysis results show that the process of slope failure could be chronologically divided into three stages. First, a collapse pit, caused by the falling of the overlying strata above the goaf, appeared on the eastern slope. Then, the rock mass around the collapse pit slid into the pit to form a small landslide. Finally, because of mining disturbances and rock creep, a large landslide occurred on the northeastern phyllite slope. The control mechanisms of each failure stage are discussed separately. Finally, the RFPA3D code is employed to simulate the slope failure process under the influence of underground mining. The results are consistent with the field observations, which provided information on deformation failure and the mechanics of the slope that could not be directly observed in the field and deepened the mechanism analysis
Effect of WC Grain Size and Abrasive Type on the Wear Performance of HVOF-Sprayed WC-20Cr3C2-7Ni Coatings
In order to investigate the effect of WC grain size on coatings’ properties and abrasive wear performance, a few WC-20Cr3C2-7Ni coatings with three different WC grain sizes were deposited by the high-velocity oxy-fuel (HVOF) thermal spray process. The phase compositions, microstructures, and mechanical properties of the coatings were investigated. Furthermore, the two- and three-body abrasive wear performances of the three coatings were tested by using SiC and SiO2 abrasives, respectively. The results show that all the three coatings were composed of WC, Cr3C2, and the Ni binder as well as the (W,Cr)2C phase. The abrasive wear resistance of the WC-20Cr3C2-7Ni coating monotonously increased with increasing WC grain size when the SiC abrasive was used in the two- and three-body abrasive wear tests. However, the wear resistance trend was reversed when the SiO2 abrasive was used in the three-body abrasive wear test. The specific wear rate of the WC-20Cr3C2-7Ni coating exposed to the SiC abrasive under the two-body abrasive wear test was the largest. The wear resistance of the coatings was more significantly affected by the hardness of the abrasive particles than the size of carbides present within the coating. The high hardness of SiC can cut both the carbide and the binder phase of the WC-based cermet coatings, resulting in a high wear rate, whereas the low hardness of SiO2 cuts and/or scratches the binder initially, and then it dislodges the carbides from the matrix. The dislodged carbides which were subsequently pulled out from the matrix by the repeated impact of the SiO2 abrasives result in a milder wear rate
IL-17 Activates the IL-6/STAT3 Signal Pathway in the Proliferation of Hepatitis B Virus-Related Hepatocellular Carcinoma
Background/Aims: We performed this study to determine the role of IL-17 in the immune microenvironment of hepatitis B virus- (HBV-) related hepatocellular carcinoma (HCC). Methods: HepG2 cells were treated with IL-17, STAT3 inhibitor S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb). Cell proliferation and migration were compared using the Cell Counting kit-8 (CCK-8) and Transwell assays, respectively. Real-time quantitative PCR (RT-qPCR), Western Blot, ELISA, immunofluorescence and histological staining were used for determining the expression levels of IL-17, IL-6, MCP-1, CCL5, VEGF, STAT3 and p-STAT3. HCC xenograft models were constructed in wild type and IL-17 knockout mice to clarify the effects of IL-17 on HCC in vivo. Results: Exogenous IL-17 enhanced the proliferation and migration of HepG2 cells, and it activated the phosphorylation of STAT3. RT-qPCR and ELISA showed that IL-17 promoted the expression of IL-6. The CCK-8 and Transwell assays showed that S31-201 or IL-6 mAb remarkably reversed the promotion effects of proliferation and migration by exogenous IL-17 in HepG2 cells. Additionally, IL-6 could promote the phosphorylation of STAT3, while IL-6 mAb acted as an inhibitor, and exogenous IL-17 could neutralize the inhibitory effects of IL-6 mAb. In vivo, compared to the wild type mice, the tumor volume, weight, density and size were decreased in IL-17 knockout mice. Additionally, the expression levels of p-STAT3, IL-6, MCP-1, CCL5 and VEGF decreased in IL-17 knockout mice. Conclusions: IL-17 can enhance the proliferation of HepG2 cells in vitro and in vivo via activating the IL-6/STAT3 pathway. Therefore, the IL-17/IL-6/STAT3 signaling pathway is a potential therapeutic target for HBV-related HCC
Preparation and Characterization of Synchronous Chemical Conversion Coating on 6061 Aluminum Alloy/7075 Aluminum Alloy/Galvanized Steel Substrates
This paper aimed to develop synchronous chemical conversion coating on multi-metal substrates with good corrosion resistance to meet the primer process of new energy light vehicle bodies. Titanium/zirconium-based chemical conversion coatings were prepared on 6061 aluminum alloy/7075 aluminum alloy/galvanized steel substrates. By measuring the open circuit potential (OCP), the formation of a muti-metal synchronous conversion coating can be roughly divided into three steps. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques showed that the self-corrosion current density of the conversion coating decreased significantly while the resistance increased. The surface morphology and composition of the conversion coatings were observed by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Additionally, the micro-zone characteristics of conversion coatings were analyzed by an electron probe microanalyzer (EPMA). The synchronous conversion coatings exhibit uniformity and relative smoothness. Additionally, a number of tiny cracks, pores, intermetallic compounds, enrichments and inclusions provide efficient active sites for the nucleation of chemical conversion. Consequently, in the synchronous conversion coating, the structure of aluminum alloy mainly consists of Al2O3/TiO2/ZrO2/ZrF4, while the structure of conversion coating of galvanized steel contains TiO2/Fe2O3/ZrO2
MOESM1 of miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling
Additional file 1: Figure S1. The binding site between miR-155-5p and CTHRC1 was predicted by bioinformatics analysis using TargetScan