3,197 research outputs found

    Precise QCD predictions on top quark pair production mediated by massive color octet vector boson at hadron colliders

    Full text link
    We present a theoretical framework for systematically calculating next-to-leading order (NLO) QCD effects to various experimental observables in models with massive COVB in a model independent way at hadron colliders. Specifically, we show the numerical results for the NLO QCD corrections to total cross sections, invariant mass distribution and AFB of top quark pairs production mediated by a massive COVB in both the fixed scale (top quark mass) scheme and the dynamical scale (top pair invariant mass) scheme. Our results show that the NLO QCD calculations in the dynamical scale scheme is more reasonable than the fixed scheme and the naive estimate of the NLO effects by simple rescaling of the LO results with the SM NLO K-factor is not appropriate.Comment: 6 pages, 5 figures, 2 tables; version published in EPJ

    Top quark pair production at small transverse momentum in hadronic collisions

    Full text link
    We investigate the transverse momentum resummation for top quark pair production at hadron colliders using the soft-collinear effective theory and the heavy-quark effective theory. We derive the factorization formula for ttˉt\bar{t} production at small pair transverse momentum, and show in detail the procedure for calculating the key ingredient of the factorization formula: the next-to-leading order soft functions. We compare our numerical results with experimental data and find that they are consistent within theoretical and experimental uncertainties. To verify the correctness of our resummation formula, we expand it to the next-to-leading order and the next-to-next-to-leading order, and compare those expressions with the exact fixed-order results numerically. Finally, using the results of transverse momentum resummation, we discuss the transverse-momentum-dependent forward-backward asymmetry at the Tevatron.Comment: 39 pages, 7 figures, 1 table; final version in PR

    Retrieving Ground-Level PM2.5 Concentrations in China (2013–2021) with a Numerical Model-Informed Testbed to Mitigate Sample Imbalance-Induced Biases

    Get PDF
    Ground-level PM2.5 data derived from satellites with machine learning are crucial for health and climate assessments, however, uncertainties persist due to the absence of spatially covered observations. To address this, we propose a novel testbed using untraditional numerical simulations to evaluate PM2.5 estimation across the entire spatial domain. The testbed emulates the general machine-learning approach, by training the model with grids corresponding to ground monitor sites and subsequently testing its predictive accuracy for other locations. Our approach enables comprehensive evaluation of various machine-learning methods’ performance in estimating PM2.5 across the spatial domain for the first time. Unexpected results are shown in the application in China, with larger PM2.5 biases found in densely populated regions with abundant ground observations across all benchmark models, challenging conventional expectations and are not explored in the recent literature. The imbalance in training samples, mostly from urban areas with high emissions, is the main reason, leading to significant overestimation due to the lack of monitors in downwind areas where PM2.5 is transported from urban areas with varying vertical profiles. Our proposed testbed also provides an efficient strategy for optimizing model structure or training samples to enhance satellite-retrieval model performance. Integration of spatiotemporal features, especially with CNN-based deep-learning approaches like the ResNet model, successfully mitigates PM2.5 overestimation (by 5–30 µg m-3) and corresponding exposure (by 3 million people • µg m-3) in the downwind area over the past nine years (2013–2021) compared to the traditional approach. Furthermore, the incorporation of 600 strategically positioned ground-measurement sites identified through the testbed is essential to achieve a more balanced distribution of training samples, thereby ensuring precise PM2.5 estimation and facilitating the assessment of associated impacts in China. In addition to presenting the retrieved surface PM2.5 concentrations in China from 2013 to 2021, this study provides a testbed dataset derived from physical modeling simulations which can serve to evaluate the performance of data-driven methodologies, such as machine learning, in estimating spatial PM2.5 concentrations for the community

    Model independent analysis of top quark forward-backward asymmetry at the Tevatron up to \mathcal{O}(\as^2/\Lambda^2)

    Full text link
    We present the complete calculations of the forward-backward asymmetry (AFBA_{\rm FB}) and the total cross section of top quark pair production induced by dimension-six four quark operators at the Tevatron up to \mathcal{O}(\as^2/\Lambda^2). Our results show that next-to-leading order (NLO) QCD corrections can change AFBA_{\rm FB} and the total cross section by about 10%. Moreover, NLO QCD corrections reduce the dependence of AFBA_{\rm FB} and total cross section on the renormalization and factorization scales significantly. We also evaluate the total cross section and the charge asymmetry (ACA_{\rm C}) induced by these operators at the Large Hadron Collider (LHC) up to \mathcal{O}(\as^2/\Lambda^2), for the parameter space allowed by the Tevatron data. We find that the value of ACA_{\rm C} induced by these operators is much larger than SM prediction, and LHC has potential to discover these NP effects when the measurement precision increases.Comment: 25 pages, 10 figures; final version in PR

    N′-(3-Bromo-4-methoxy­benzyl­idene)nicotinohydrazide monohydrate

    Get PDF
    In the title compound, C14H12BrN3O2·H2O, the benzene ring is oriented at a dihedral angle of 39.66 (11)° with respect to the pyridine ring. The solvent water mol­ecule links with the organic compound via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonding
    • …
    corecore