14 research outputs found
ELM triggering conditions for the integrated modeling of H-mode plasmas
Recent advances in the integrated modeling of ELMy H-mode plasmas are
presented. A model for the H-mode pedestal and for the triggering of ELMs
predicts the height, width, and shape of the H-mode pedestal and the frequency
and width of ELMs. Formation of the pedestal and the L-H transition is the
direct result of ExB flow shear suppression of anomalous transport. The
periodic ELM crashes are triggered by either the ballooning or peeling MHD
instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to
derive a new parametric expression for the peeling-ballooning threshold. The
new dependence for the peeling-ballooning threshold is implemented in the ASTRA
transport code. Results of integrated modeling of DIII-D like discharges are
presented and compared with experimental observations. The results from the
ideal MHD stability codes are compared with results from the resistive MHD
stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Multicomponent theory of buoyancy instabilities in magnetized plasmas: The case of magnetic field parallel to gravity
We investigate electromagnetic buoyancy instabilities of the electron-ion
plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations,
but using the multicomponent plasma approach when the momentum equations are
solved for each species. We consider a geometry in which the background
magnetic field, gravity, and stratification are directed along one axis. The
nonzero background electron thermal flux is taken into account. Collisions
between electrons and ions are included in the momentum equations. No
simplifications usual for the one-fluid MHD-approach in studying these
instabilities are used. We derive a simple dispersion relation, which shows
that the thermal flux perturbation generally stabilizes an instability for the
geometry under consideration. This result contradicts to conclusion obtained in
the MHD-approach. We show that the reason of this contradiction is the
simplified assumptions used in the MHD analysis of buoyancy instabilities and
the role of the longitudinal electric field perturbation which is not captured
by the ideal MHD equations. Our dispersion relation also shows that the medium
with the electron thermal flux can be unstable, if the temperature gradients of
ions and electrons have the opposite signs. The results obtained can be applied
to the weakly collisional magnetized plasma objects in laboratory and
astrophysics.Comment: Accepted for publication in Astrophysics & Space Scienc
Stochastic particle acceleration and statistical closures
In a recent paper, Maasjost and Elsasser (ME) concluded, from the results of numerical experiments and heuristic arguments, that the Bourret and the direct-interaction approximation (DIA) are ''of no use in connection with the stochastic acceleration problem'' because (1) their predictions were equivalent to that of the simpler Fokker-Planck (FP) theory, and (2) either all or none of the closures were in good agreement with the data. Here some analytically tractable cases are studied and used to test the accuracy of these closures. The cause of the discrepancy (2) is found to be the highly non-Gaussian nature of the force used by ME, a point not stressed by them. For the case where the force is a position-independent Ornstein-Uhlenbeck (i.e., Gaussian) process, an effective Kubo number K can be defined. For K << 1 an FP description is adequate, and conclusion (1) of ME follows; however, for K greater than or equal to 1 the DIA behaves much better qualitatively than the other two closures. For the non-Gaussian stochastic force used by ME, all common approximations fail, in agreement with (2)
On coupling fluid plasma and kinetic neutral physics models
The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation. Keywords: Divertor modeling, Charge exchange, Ionization, Recombination, Implicit, Newton–Krylov, UEDGE, DEGAS2, EIRENE, SOLPS, MSC: 00-01, 99-0
Recommended from our members
Nonlinear mechanisms for drift wave saturation and induced particle transport
A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs