150 research outputs found
Study of hole-transporter-free perovskite solar cells based on fully printable components
Hole-transporter-free perovskite solar cells carrying a carbon back contact electrode provide the possibility of making full printable low cost and stable devices, even though their efficiency is substantially lower than those made in the standard configuration. The present work searched for simple and easy routes for constructing such devices, demonstrating that organic components do enhance device efficiency but only to a level that is not worth the trouble nor the cost. Devices based on a triple mesoporous layer of titania/zirconia/carbon with perovskite infiltration gave an efficiency of 10.7%. After 180 days of storing under ambient conditions, a small loss of efficiency has been observed for a cell made in June, in spite of the fact that in going from June to December, a large increase of the ambient humidity took place, thus verifying the protective effect that the carbon electrode is providing. The addition of spiro-OMeTAD to the hole-transporter-free device resulted in increasing the efficiency by about 10%, a change which is appreciated to be of low importance given the cost of this material. This increase mainly derived from an increase in the current. Devices of different sizes have been constructed by screen printing, using home-made pastes for all the components making the cell scaffold, i.e., for titania, zirconia, and carbon layers
Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications
Perovskite solar cells (PSCs) have already achieved comparable performance to industrially established silicon technologies. However, high performance and stability must be also be achieved at large area and low cost to be truly commercially viable. The fully printable triple-mesoscopic carbon perovskite solar cell (mCPSC) has demonstrated unprecedented stability and can be produced at low capital cost with inexpensive materials. These devices are inherently scalable, and large-area modules have already been fabricated using low-cost screen printing. As a uniquely stable, scalable and low-cost architecture, mCPSC research has advanced significantly in recent years. This review provides a detailed overview of advancements in the materials and processing of each individual stack layer as well as in-depth coverage of work on perovskite formulations, with the view of highlighting potential areas for future research. Long term stability studies will also be discussed, to emphasise the impressive achievements of mCPSCs for both indoor and outdoor applications
- …