22 research outputs found
An integrable system of K3-Fano flags
Given a K3 surface S, we show that the relative intermediate Jacobian of the
universal family of Fano 3-folds V containing S as an anticanonical divisor is
a Lagrangian fibration. The proof uses variations of the mixed Hodge structure
of the pair (V,S).Comment: 10 pages; final version as published in Math. Annale
Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces
We construct a compactification of the Uhlenbeck-Donaldson type
for the moduli space of slope stable framed bundles. This is a kind of a moduli
space of slope semistable framed sheaves. We show that there exists a
projective morphism , where is
the moduli space of S-equivalence classes of Gieseker-semistable framed
sheaves. The space has a natural set-theoretic stratification
which allows one, via a Hitchin-Kobayashi correspondence, to compare it with
the moduli spaces of framed ideal instantons.Comment: 18 pages. v2: a few very minor changes. v3: 27 pages. Several proofs
have been considerably expanded, and more explanations have been added. v4:
28 pages. A few minor changes. Final version accepted for publication in
Math.
Moduli of symplectic instanton vector bundles of higher rank on projective space P3
Symplectic instanton vector bundles on the projective space P3 constitute a natural generalization of mathematical instantons of rank 2. We study the moduli space In,r of rank-2r symplectic instanton vector bundles on P3 with r 65 2 and second Chern class n 65 r, n 61 r(mod2). We give an explicit construction of an irreducible component In 17,r of this space for each such value of n and show that In 17,r has the expected dimension 4n(r + 1) 12 r(2r + 1). \ua9 2012 Versita Warsaw and Springer-Verlag Wien
Minimal Discrepancy for a Terminal cDV Singularity Is 1
An answer to a question raised by Shokurov on the minimal discrepancy of a terminal singularity of index 1 is given. It is proved that the minimal discrepancy is 1 (it is 2 for a non-singular point and 0 for all other canonical singularities of index 1). A rough classification of terminal singularities of index 1 based on finding certain low degree monomials in their equations, and the toric techniques of weighted blow ups are used. This result has been generalized to terminal singularities of index by Y.Kawamata; his theorem states that the minimal discrepancy is