14 research outputs found

    Multiyear Raman lidar observations of free-tropospheric aerosol layers over Athens: Geometrical and optical properties

    Get PDF
    Η παρούσα διπλωματική εργασία πραγματεύεται τον χαρακτηρισμό και την μελέτη των αιωρούμενων σωματιδίων πάνω από το Αττικό λεκανοπέδιο με την μέθοδο τηλεπισκόπησης laser. Για τον σκοπό αυτό χρησιμοποιηθήκαν δεδομένα από το σύστημα lidar [=light detection and ranging] της Μονάδας Τηλεπισκόπησης Laser (Laser Remote Sensing Unit – LRSU) που στεγάζεται στην Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Εφαρμογών- ΣΕΜΦΕ του Εθνικού Μετσόβιου Πολυτεχνείου – ΕΜΠ. Στην εργασία αυτή χρησιμοποιήθηκαν τα δεδομένα της περιόδου 2017-2022. Στόχος της εργασίας είναι ο χαρακτηρισμός κάθε αέριου στρώματος που εντοπίζεται από το σύστημα lidar στην περίοδο αυτή, καθώς και η ανάλυση των γεωμετρικών αλλά και οπτικών ιδιοτήτων των στρωμάτων σωματιδίων. Οι γεωμετρικές ιδιότητες που μελετήθηκαν είναι: η κορυφή, η βάση, το πάχος και το κεντρικό ύψος του κάθε στρώματος σωματιδίων. Οι οπτικές ιδιότητες που μελετήθηκαν είναι: οι συντελεστές οπισθοσκέδασης, οι εκθέτες Ångström, οι συντελεστές εξασθένισης, ο λόγος lidar και τέλος ο λόγος αποπόλωσης των αιωρούμενων σωματιδίων. Συνολικά εντοπίστηκαν 213 στρώματα αιρούμενων σωματιδίων στην ελεύθερη τροπόσφαιρα κατά την περίοδο της μελέτης.This master’s thesis examines the characterization and properties of aerosol particles suspended over the Athens basin using the laser remote sensing method. The data for this study were provided by the lidar [=light detection and ranging] system of the Laser Remote Sensing Unit (LRSU) which is located in the School of Applied Mathematical and Physical Sciences (SEMFE) of the National Technical University of Athens-NTUA. The dataset covers the time period 2017-2022. The aim of this project is the characterization of every aerosol layer detected by the lidar system during the aforementioned period, as well as the analysis of the geometrical and optical properties of each particle layer. The geometrical properties analyzed are the following: top, base, thickness, and central height of each layer. The optical properties analyzed are: backscatter, Ångström and extinction coefficients, lidar ratios and finally depolarization ratio of suspended particles. A total of 213 free-tropospheric aerosol layers were detected throughout the period under study. This thesis contains a brief introduction to the subject and the purpose of this study, followed by the 1st Chapter that explains the theory behind aerosols and the basic principles of lidar systems and lidar measurements. In Chapter 2 the methodology that was used in this study and all the steps are analytically explained. In Chapter 3, we present and discuss in detail the results that came up throughout this project. Finally, in Chapter 4, we summarize the most important conclusions

    In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells

    Get PDF
    Human mesenchymal progenitor cells (MPCs) are considered to be of great promise for use in tissue repair and regenerative medicine. MPCs represent multipotent adherent cells, able to give rise to multiple mesenchymal lineages such as osteoblasts, adipocytes or chondrocytes. Recently, we identified and characterized human second trimester amniotic fluid (AF) as a novel source of MPCs. Herein, we found that early colonies of AF-MPCs consisted of two morphologically distinct adherent cell types, termed as spindle-shaped (SS) and round-shaped (RS). A detailed analysis of these two populations showed that SS-AF-MPCs expressed CD90 antigen in a higher level and exhibited a greater proliferation and differentiation potential. To characterize better the molecular identity of these two populations, we have generated a comparative proteomic map of SS-AF-MPCs and RS-AF-MPCs, identifying 25 differentially expressed proteins and 10 proteins uniquely expressed in RS-AF-MPCs. Furthermore, SS-AF-MPCs exhibited significantly higher migration ability on extracellular matrices, such as fibronectin and laminin in vitro, compared to RS-AF-MPCs and thus we further evaluated SS-AF-MPCs for potential use as therapeutic tools in vivo. Therefore, we tested whether GFP-lentiviral transduced SS-AF-MPCs retained their stem cell identity, proliferation and differentiation potential. GFP-SS-AF-MPCs were then successfully delivered into immunosuppressed mice, distributed in different tissues and survived longterm in vivo. In summary, these results demonstrated that AF-MPCs consisted of at least two different MPC populations. In addition, SS-AF-MPCs, isolated based on their colony morphology and CD90 expression, represented the only MPC population that can be expanded easily in culture and used as an efficient tool for future in vivo therapeutic applications

    Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing

    No full text
    In the present study, we present the aerosol optical properties and radiative forcing (RF) of the tropospheric and stratospheric smoke layers, observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, during the extraordinary Australian biomass burning (BB) event in 2019–2020. These BB layers were studied and analyzed within the longitude range 140° E–20° W and the latitude band 20°–60° S, as they were gradually transported from the Australian banks to the South American continent. These layers were found to be trapped within the Andes circulation, staying for longer time periods in the same longitude region. The BB aerosols reached altitudes even up to 22 km amsl., and regarding their optical properties, they were found to be nearly spherical (particle linear depolarization ratio (PLDR) b up to 3), in contrast to the Åb values in the troposphere (Åb b values, while the stratospheric ones were lightly increased. A maximum aerosol optical depth (AOD) value of 0.54 was recorded in the lower troposphere over the fire spots, while, in the stratosphere, AOD values up to 0.29 were observed. Sharp changes of carbon monoxide (CO) and ozone (O3) concentrations were also recorded by the Copernicus Atmosphere Monitoring Service (CAMS) in various atmospheric heights over the study region, associated with fire smoke emissions. The tropospheric smoke layers were found to have a negative mean radiative effect, ranging from −12.83 W/m2 at the top of the atmosphere (TOA), to −32.22 W/m2 on the surface (SRF), while the radiative effect of the stratospheric smoke was estimated between −7.36 at the TOA to −18.51 W/m2 at the SRF

    Optical and Microphysical Properties of Aged Biomass Burning Aerosols and Mixtures, Based on 9-Year Multiwavelength Raman Lidar Observations in Athens, Greece

    No full text
    Mean optical and microphysical aerosol properties of long-range transported biomass burning (BB) particles and mixtures are presented from a 9-year (2011–2019) data set of multiwavelength Raman lidar data, obtained by the EOLE lidar over the city of Athens (37.58° N, 23.47° E), Greece. We studied 34 aerosol layers characterized as: (1) smoke; (2) smoke + continental polluted, and (3) smoke + mixed dust. We found, mainly, small-sized aerosols with mean backscatter-related (355 nm/532 nm, 532 nm/1064 nm) values and Ångström exponent (AE) values in the range 1.4–1.7. The lidar ratio (LR) value at 355 nm was found to be 57 ± 10 sr, 51 ± 5 sr, and 38 ± 9 sr for the aerosol categories (1), (2), and (3), respectively; while at 532 nm, we observed LR values of 73 ± 11 sr, 59 ± 10 sr, and 62 ± 12 for the same categories. Regarding the retrieved microphysical properties, the effective radius (reff) ranged from 0.24 ± 0.11 to 0.24 ± 0.14 μm for all aerosol categories, while the volume density (vd) ranged from 8.6 ± 3.2 to 20.7 ± 14.1 μm−3cm−3 with the higher values linked to aerosol categories (1) and (2); the real part of the refractive index (mR) ranged between 1.49 and 1.53, while for the imaginary part (mI), we found values within 0.0108 i and 0.0126 i. Finally, the single scattering albedo (SSA) of the propped particles varied from 0.915 to 0.936 at all three wavelengths (355–532–1064 nm). The novelty of this study is the provision of typical values of BB aerosol properties from the UV to the near IR, which can be used in forecasting the aerosol climatic effects in the European region

    Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure

    No full text
    Background There is increasing interest in the therapeutic potential of human mesenchymal stem cells (hMSCs), especially in diseases such as acute hepatic failure (AHF) that are predominantly caused by a variety of drugs and viruses. In previous studies, a distinct population termed human spindle-shaped MSCs were isolated and expanded from second trimester amniotic fluid (AF-MSCs) and characterised based on their phenotype, pluripotency and differentiation potential. Methods AF-MSCs, hepatic progenitor-like (HPL) cells and hepatocyte-like (HL) cells derived from AF-MSCs were transplanted into CCl4-injured NOD/SCID mice with the AHF phenotype in order to evaluate their therapeutic potential. Conditioned medium (CM) derived from AF-MSCs or HPL cells was then delivered intrahepatically in order to determine whether the engraftment of the cells or their secreted molecules are the most important agents for liver repair. Results Both HPL cells and AF-MSCs were incorporated into CCl4-injured livers; HPL cell transplantation had a greater therapeutic effect. In contrast, HL cells failed to engraft and contribute to recovery. In addition, HPL-CM was found to be more efficient than CM derived from AF-MSCs in treatment of the liver. Proteome profile analysis of HPL-CM indicated the presence of anti-inflammatory factors such as interleukins IL-10, IL-1ra, IL-13 and IL-27 which may induce liver recovery. Blocking studies of IL-10 secretion from HPL cells confirmed the therapeutic significance of this cytokine in the AHF mouse model. Conclusions Human spindle-shaped AF-MSCs or HPL cells might be valuable tools to induce liver repair and support liver function by cell transplantation. More importantly, the factors they release may also play an important role in cell treatment in diseases of the liver

    In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells

    No full text
    Human mesenchymal progenitor cells (MPCs) are considered to be of great promise for use in tissue repair and regenerative medicine. MPCs represent multipotent adherent cells, able to give rise to multiple mesenchymal lineages such as osteoblasts, adipocytes or chondrocytes. Recently, we identified and characterized human second trimester amniotic fluid (AF) as a novel source of MPCs. Herein, we found that early colonies of AF-MPCs consisted of two morphologically distinct adherent cell types, termed as spindle-shaped (SS) and round-shaped (RS). A detailed analysis of these two populations showed that SS-AF-MPCs expressed CD90 antigen in a higher level and exhibited a greater proliferation and differentiation potential. To characterize better the molecular identity of these two populations, we have generated a comparative proteomic map of SS-AF-MPCs and RS-AF-MPCs, identifying 25 differentially expressed proteins and 10 proteins uniquely expressed in RS-AF-MPCs. Furthermore, SS-AF-MPCs exhibited significantly higher migration ability on extracellular matrices, such as fibronectin and laminin in vitro, compared to RS-AF-MPCs and thus we further evaluated SS-AF-MPCs for potential use as therapeutic tools in vivo. Therefore, we tested whether GFP-lentiviral transduced SS-AF-MPCs retained their stem cell identity, proliferation and differentiation potential. GFP-SS-AF-MPCs were then successfully delivered into immunosuppressed mice, distributed in different tissues and survived longterm in vivo. In summary, these results demonstrated that AF-MPCs consisted of at least two different MPC populations. In addition, SS-AF-MPCs, isolated based on their colony morphology and CD90 expression, represented the only MPC population that can be expanded easily in culture and used as an efficient tool for future in vivo therapeutic applications

    Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period

    No full text
    We report on a long-lasting (10 days) Saharan dust event affecting large sections of South-Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties in the absence of important air pollution sources over the European continent. During the event, moderate aerosol optical depth (AOD) values (0.3–0.4) were observed inside the dust layer by the ground-based lidar measurements (at 532 nm). Vertical profiles of the lidar ratio and the particle linear depolarization ratio (at 355 nm) showed mean layer values of the order of 47 ± 9 sr and 28 ± 5%, respectively, revealing the coarse non-spherical mode of the probed plume. The values reported here are very close to pure dust measurements performed during dedicated campaigns in the African continent. By utilizing Libradtran simulations for two scenarios (one for typical midlatitude atmospheric conditions and one having reduced atmospheric pollutants due to COVID-19 restrictions, both affected by a free tropospheric dust layer), we revealed negligible differences in terms of radiative effect, of the order of +2.6% (SWBOA, cooling behavior) and +1.9% (LWBOA, heating behavior). Moreover, the net heating rate (HR) at the bottom of the atmosphere (BOA) was equal to +0.156 K/d and equal to +2.543 K/d within 1–6 km due to the presence of the dust layer at that height. On the contrary, the reduction in atmospheric pollutants could lead to a negative HR (−0.036 K/d) at the bottom of the atmosphere (BOA) if dust aerosols were absent, while typical atmospheric conditions are estimated to have an almost zero net HR value (+0.006 K/d). The NMMB-BSC forecast model provided the dust mass concentration over Athens, while the air mass advection from the African to the European continent was simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

    Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period

    No full text
    We report on a long-lasting (10 days) Saharan dust event affecting large sections of South-Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties in the absence of important air pollution sources over the European continent. During the event, moderate aerosol optical depth (AOD) values (0.3–0.4) were observed inside the dust layer by the ground-based lidar measurements (at 532 nm). Vertical profiles of the lidar ratio and the particle linear depolarization ratio (at 355 nm) showed mean layer values of the order of 47 ± 9 sr and 28 ± 5%, respectively, revealing the coarse non-spherical mode of the probed plume. The values reported here are very close to pure dust measurements performed during dedicated campaigns in the African continent. By utilizing Libradtran simulations for two scenarios (one for typical midlatitude atmospheric conditions and one having reduced atmospheric pollutants due to COVID-19 restrictions, both affected by a free tropospheric dust layer), we revealed negligible differences in terms of radiative effect, of the order of +2.6% (SWBOA, cooling behavior) and +1.9% (LWBOA, heating behavior). Moreover, the net heating rate (HR) at the bottom of the atmosphere (BOA) was equal to +0.156 K/d and equal to +2.543 K/d within 1–6 km due to the presence of the dust layer at that height. On the contrary, the reduction in atmospheric pollutants could lead to a negative HR (−0.036 K/d) at the bottom of the atmosphere (BOA) if dust aerosols were absent, while typical atmospheric conditions are estimated to have an almost zero net HR value (+0.006 K/d). The NMMB-BSC forecast model provided the dust mass concentration over Athens, while the air mass advection from the African to the European continent was simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

    Vertical Profiling of Fresh Biomass Burning Aerosol Optical Properties over the Greek Urban City of Ioannina, during the PANACEA Winter Campaign

    No full text
    Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period
    corecore