15 research outputs found
Managing Dynamic Enterprise and Urgent Workloads on Clouds Using Layered Queuing and Historical Performance Models
The automatic allocation of enterprise workload to resources can be enhanced by being able to make what-if response time predictions whilst different allocations are being considered. We experimentally investigate an historical and a layered queuing performance model and show how they can provide a good level of support for a dynamic-urgent cloud environment. Using this we define, implement and experimentally investigate the effectiveness of a prediction-based cloud workload and resource management algorithm. Based on these experimental analyses we: i.) comparatively evaluate the layered queuing and historical techniques; ii.) evaluate the effectiveness of the management algorithm in different operating scenarios; and iii.) provide guidance on using prediction-based workload and resource management
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
Correction: vol 7, 13205, 2016, doi:10.1038/ncomms13205Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2) = 0.18, P value = 0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.Peer reviewe
Allocating Non-real-time and Soft Real-time Jobs in Multiclusters
This paper addresses workload allocation techniques for two types of sequential jobs that might be found in multicluster systems, namely non-real-time jobs and soft real-time jobs. Two workload allocation strategies, the Optimized mean Response Time (ORT) and the Optimized mean Miss Rate (OMR), are developed by establishing and numerically solving two optimization equation sets. The ORT strategy achieves an optimized mean response time for non-real-time jobs; while the OMR strategy obtains an optimized mean miss rate for soft real-time jobs over multiple clusters. Both strategies take into account average system behav-iours (such as the mean arrival rate of jobs) in calculating the workload proportions for indi-vidual clusters and the workload allocation is updated dynamically when the change in the mean arrival rate reaches a certain threshold. The effectiveness of both strategies is demon-strated through theoretical analysis. These strategies are also evaluated through extensive ex-perimental studies and the results show that when compared with traditional strategies, the proposed workload allocation schemes significantly improve the performance of job schedul-ing in multiclusters, both in terms of the mean response time (for non-real-time jobs) and the mean miss rate (for soft real-time jobs)