120 research outputs found

    The pH of the skin surface and its impact on the barrier function

    Get PDF
    The `acid mantle' of the stratum corneum seems to be important for both permeability barrier formation and cutaneous antimicrobial defense. However, the origin of the acidic pH, measurable on the skin surface, remains conjectural. Passive and active influencing factors have been proposed, e. g. eccrine and sebaceous secretions as well as proton pumps. In recent years, numerous investigations have been published focusing on the changes in the pH of the deeper layers of the stratum corneum, as well as on the influence of physiological and pathological factors. The pH of the skin follows a sharp gradient across the stratum corneum, which is suspected to be important in controlling enzymatic activities and skin renewal. The skin pH is affected by a great number of endogenous factors, e. g. skin moisture, sweat, sebum, anatomic site, genetic predisposition and age. In addition, exogenous factors like detergents, application of cosmetic products, occlusive dressings as well as topical antibiotics may influence the skin pH. Changes in the pH are reported to play a role in the pathogenesis of skin diseases like irritant contact dermatitis, atopic dermatitis, ichthyosis, acne vulgaris and Candida albicans infections. Therefore, the use of skin cleansing agents, especially synthetic detergents with a pH of about 5.5, may be of relevance in the prevention and treatment of those skin diseases. Copyright (c) 2006 S. Karger AG, Base

    Impact of Age and Body Site on Adult Female Skin Surface pH

    Get PDF
    Background: pH is known as an important parameter in epidermal barrier function and homeostasis. Aim: The impact of age and body site on skin surface pH (pH(SS)) of women was evaluated in vivo. Methods: Time domain dual lifetime referencing with luminescent sensor foils was used for pH(SS) measurements. pH(SS) was measured on the forehead, the temple, and the volar forearm of adult females (n = 97, 52.87 +/- 18.58 years, 20-97 years). Every single measurement contained 2,500 pH values due to the luminescence imaging technique used. Results: pH(SS) slightly increases with age on all three investigated body sites. There are no significant differences in pH(SS) between the three investigated body sites. Conclusion: Adult pH(SS) on the forehead, the temple and the volar forearm increases slightly with age. This knowledge is crucial for adapting medical skin care products. Copyright (C) 2012 S. Karger AG, Base

    miR-22 Forms a Regulatory Loop in PTEN/AKT Pathway and Modulates Signaling Kinetics

    Get PDF
    Background: The tumor suppressor PTEN (phosphatase and tensin homolog) is a lipid phosphatase that converts PIP3 into PIP2 and downregulates the kinase AKT and its proliferative and anti-apoptotic activities. The FoxO transcription factors are PTEN downstream effectors whose activity is negatively regulated by AKT-mediated phosphorylation. PTEN activity is frequently lost in many types of cancer, leading to increased cell survival and cell cycle progression. Principal Findings: Here we characterize the widely expressed miR-22 and report that miR-22 is a novel regulatory molecule in the PTEN/AKT pathway. miR-22 downregulates PTEN levels acting directly through a specific site on PTEN 39UTR. Interestingly, miR-22 itself is upregulated by AKT, suggesting that miR-22 forms a feed-forward circuit in this pathway. Timeresolved live imaging of AKT-dependent FoxO1 phosphorylation revealed that miR-22 accelerated AKT activity upon growth factor stimulation, and attenuated its down regulation by serum withdrawal. Conclusions: Our results suggest that miR-22 acts to fine-tune the dynamics of PTEN/AKT/FoxO1 pathway

    Characterization and mitigation of gene expression burden in mammalian cells

    Get PDF
    Despite recent advances in circuit engineering, the design of genetic networks in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate that transiently expressed genes in mammalian cells compete for limited transcriptional and translational resources. This competition results in the coupling of otherwise independent exogenous and endogenous genes, creating a divergence between intended and actual function. Guided by a resource-aware mathematical model, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the use of endogenous miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells

    Targeting Spt5-Pol II by small-molecule inhibitors uncouples distinct activities and reveals additional regulatory roles

    No full text
    Original images of the Western blots presented in the paper entitled: Targeting Spt5-Pol II by small molecule inhibitors uncouple distinct activities and reveal additional regulatory roles by Bahat et a

    Novel Spt5-Pol II inhibitors uncouple distinct activities and reveal additional regulatory roles

    No full text
    Original images of the Western blots presented in the paper entitled: Targeting Spt5-Pol II by small molecule inhibitors uncouple distinct activities and reveal additional regulatory roles by Bahat et a

    Transcription dynamics regulate poly(A) tails and expression of the RNA degradation machinery to balance mRNA levels

    No full text
    Original imaging data of the manuscript entitled "Transcription dynamics regulate poly(A) tails and expression of the RNA degradation machinery to balance mRNA levels" to be published soon in Molecular Cel

    Targeting Spt5-Pol II by small-molecule inhibitors uncouples distinct activities and reveals additional regulatory roles

    No full text
    Original images of the Western blots presented in the paper entitled: Targeting Spt5-Pol II by small molecule inhibitors uncouple distinct activities and reveal additional regulatory roles by Bahat et a

    Transcription dynamics regulate poly(A) tails and expression of the RNA degradation machinery to balance mRNA levels

    No full text
    Original imaging data of the manuscript entitled "Transcription dynamics regulate poly(A) tails and expression of the RNA degradation machinery to balance mRNA levels" to be published soon in Molecular CellTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    corecore