3 research outputs found
Functional importance of angiotensin-converting enzyme-dependent in situ angiotensin II generation in the human forearm
To assess the importance for vasoconstriction of in situ angiotensin (Ang)
II generation, as opposed to Ang II delivery via the circulation, we
determined forearm vasoconstriction in response to Ang I (0.1 to 10 ng.
kg(-1). min(-1)) and Ang II (0.1 to 5 ng. kg(-1). min(-1)) in 14
normotensive male volunteers (age 18 to 67 years). Changes in forearm
blood flow (FBF) were registered with venous occlusion plethysmography.
Arterial and venous blood samples were collected under steady-state
conditions to quantify forearm fractional Ang I-to-II conversion. Ang I
and II exerted the same maximal effect (mean+/-SEM 71+/-4% and 75+/-4%
decrease in FBF, respectively), with similar potencies (mean EC(50)
[range] 5.6 [0.30 to 12.0] nmol/L for Ang I and 3.6 [0.37 to 7.1] nmol/L
for Ang II). Forearm fractional Ang I-to-II conversion was 36% (range 18%
to 57%). The angiotensin-converting enzyme (ACE) inhibitor enalaprilat (80
ng. kg(-1). min(-1)) inhibited the contra
Type I IFN signature in childhood-onset systemic lupus erythematosus: A conspiracy of DNA- and RNA-sensing receptors?
Background: Childhood-onset systemic lupus erythematosus (cSLE) is an incurable multi-systemic autoimmune disease. Interferon type I (IFN-I) plays a pivotal role in the pathogenesis of SLE. The objective of this study was to assess the prevalence of the IFN-I signature and the contribution of cytosolic nucleic acid receptors to IFN-I activation in a cohort of primarily white cSLE patients. Methods: The IFN-I score (positive or negative), as a measure of IFN-I activation, was assessed using real-time quantitative PCR (RT-PCR) expression values of IFN-I signature genes (IFI44, IFI44L, IFIT1, Ly6e, MxA, IFITM1) in CD14+ monocytes of cSLE patients and healthy controls (HCs). Innate immune receptor expression was determined by RT-PCR and flow cytometry. To clarify the contribution of RNA-binding RIG-like receptors (RLRs) and DNA-binding receptors (DBRs) to IFN-I activation, peripheral blood mononuclear cells (PBMCs) from patients were treated with BX795, a TANK-binding kinase 1 (TBK1) inhibitor blocking RLR and DBR pathways. Results: The IFN-I signature was positive in 57% of cSLE patients and 15% of the HCs. Upregulated gene expression of TLR7, RLRs (IFIH1, DDX58, DDX60, DHX58) and DBRs (ZBP-1, IFI16) was observed in CD14+ monocytes of the IFN-I-positive cSLE patients. Additionally, RIG-I and ZBP-1 protein expression was upregulated in these cells. Spontaneous IFN-I stimulated gene (ISG) expression in PBMCs from cSLE patients was inhibited by a TBK1-blocker. Conclusions: IFN-I activation, assessed as ISG expression, in cSLE is associated with increased expression of TLR7, and RNA and DNA binding receptors, and these receptors contribute to IFN-I activation via TBK1 signaling. TBK1-blockers may therefore be a promising treatment target for SLE
Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014–2018 national laboratory surveillance
Objectives: Carbapenem resistance mediated by mobile genetic elements has emerged worldwide and has become a major public health threat. To gain insight into the molecular epidemiology of carbapenem resistance in The Netherlands, Dutch medical microbiology laboratories are requested to submit suspected carbapenemase-producing Enterobacterales (CPE) to the National Institute for Public Health and the Environment as part of a national surveillance system. Methods: Meropenem MICs and species identification were confirmed by E-test and MALDI-TOF and carbapenemase production was assessed by the Carbapenem Inactivation Method. Of all submitted CPE, one species/carbapenemase gene combination per person per year was subjected to next-generation sequencing (NGS). Results: In total, 1838 unique isolates were received between 2014 and 2018, of which 892 were unique CPE isolates with NGS data available. The predominant CPE species were Klebsiella pneumoniae (n = 388, 43%), Escherichia coli (n = 264, 30%) and Enterobacter cloacae complex (n = 116, 13%). Various carbapenemase alleles of the same carbapenemase gene resulted in different susceptibilities to meropenem and this effect varied between species. Analyses of NGS data showed variation of prevalence of carbapenemase alleles over time with blaOXA-48 being predominant (38%, 336/892), followed by blaNDM-1 (16%, 145/892). For the first time in the Netherlands, blaOXA-181, blaOXA-232 and blaVIM-4 were detected. The genetic background of K. pneumoniae and E. coli isolates was highly diverse. Conclusions: The CPE population in the Netherlands is diverse, suggesting multiple introductions. The predominant carbapenemase alleles are blaOXA-48 and blaNDM-1. There was a clear association between species, carbapenemase allele and susceptibility to meropenem