1,057 research outputs found
Consistent Anisotropic Repulsions for Simple Molecules
We extract atom-atom potentials from the effective spherical potentials that
suc cessfully model Hugoniot experiments on molecular fluids, e.g., and
. In the case of the resulting potentials compare very well with the
atom-atom potentials used in studies of solid-state propertie s, while for
they are considerably softer at short distances. Ground state (T=0K) and
room temperatu re calculations performed with the new potential resolve
the previous discrepancy between experimental and theoretical results.Comment: RevTeX, 5 figure
Cleavable Biotin Probes for Labeling of Biomolecules via Azide−Alkyne Cycloaddition
The azide−alkyne cycloaddition provides a powerful tool for bio-orthogonal labeling of proteins, nucleic acids, glycans, and lipids. In some labeling experiments, e.g., in proteomic studies involving affinity purification and mass spectrometry, it is convenient to use cleavable probes that allow release of labeled biomolecules under mild conditions. Five cleavable biotin probes are described for use in labeling of proteins and other biomolecules via azide−alkyne cycloaddition. Subsequent to conjugation with metabolically labeled protein, these probes are subject to cleavage with either 50 mM Na_2S_2O_4, 2% HOCH_2CH_2SH, 10% HCO_2H, 95% CF_3CO_2H, or irradiation at 365 nm. Most strikingly, a probe constructed around a dialkoxydiphenylsilane (DADPS) linker was found to be cleaved efficiently when treated with 10% HCO_2H for 0.5 h. A model green fluorescent protein was used to demonstrate that the DADPS probe undergoes highly selective conjugation and leaves a small (143 Da) mass tag on the labeled protein after cleavage. These features make the DADPS probe especially attractive for use in biomolecular labeling and proteomic studies
Beyond binary parcellation of the vestibular cortex - A dataset
The data-set presented in this data article is supplementary to the original publication, doi:10.1016/j.neuroimage.2018.05.018 (Kirsch et al., 2018). Named article describes handedness-dependent organizational patterns of functional subunits within the human vestibular cortical network that were revealed by functional magnetic resonance imaging (fMRI) connectivity parcellation. 60 healthy volunteers (30 left-handed and 30 right-handed) were examined on a 3T MR scanner using resting state fMRI. The multisensory (non-binary) nature of the human (vestibular) cortex was addressed by using masked binary and non-binary variations of independent component analysis (ICA). The data have been made publicly available via github (https://github.com/RainerBoegle/BeyondBinar yParcellationData). (C) 2019 The Authors. Published by Elsevier Inc
Dynamics of Viscoplastic Deformation in Amorphous Solids
We propose a dynamical theory of low-temperature shear deformation in
amorphous solids. Our analysis is based on molecular-dynamics simulations of a
two-dimensional, two-component noncrystalline system. These numerical
simulations reveal behavior typical of metallic glasses and other viscoplastic
materials, specifically, reversible elastic deformation at small applied
stresses, irreversible plastic deformation at larger stresses, a stress
threshold above which unbounded plastic flow occurs, and a strong dependence of
the state of the system on the history of past deformations. Microscopic
observations suggest that a dynamically complete description of the macroscopic
state of this deforming body requires specifying, in addition to stress and
strain, certain average features of a population of two-state shear
transformation zones. Our introduction of these new state variables into the
constitutive equations for this system is an extension of earlier models of
creep in metallic glasses. In the treatment presented here, we specialize to
temperatures far below the glass transition, and postulate that irreversible
motions are governed by local entropic fluctuations in the volumes of the
transformation zones. In most respects, our theory is in good quantitative
agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure
High magnetic field induced charge density wave states in a quasi-one dimensional organic conductor
We have measured the high field magnetoresistence and magnetization of
quasi-one- dimensional (Q1D) organic conductor (Per)2Pt(mnt)2 (where Per =
perylene and mnt = maleonitriledithiolate), which has a charge density wave
(CDW) ground state at zero magnetic field below 8 K. We find that the CDW
ground state is suppressed with moderate magnetic fields of order 20 T, as
expected from a mean field theory treatment of Pauli effects[W. Dieterich and
P. Fulde, Z. Physik 265, 239 - 243 (1973)]. At higher magnetic fields, a new,
density wave state with sub-phases is observed in the range 20 to 50 T, which
is reminiscent of the cascade of field induced, quantized, spin density wave
phases (FISDW) observed in the Bechgaard salts. The new density wave state,
which we tenatively identify as a field induced charge density wave state
(FICDW), is re-entrant to a low resistance state at even higher fields, of
order 50 T and above. Unlike the FISDW ground state, the FICDW state is only
weakly orbital, and appears for all directions of magnetic field. Our findings
are substantiated by electrical resistivity, magnetization, thermoelectric, and
Hall measurements. We discuss our results in light of theoretical work
involving magnetic field dependent Q1D CDW ground states in high magnetic
fields [D. Zanchi, A. Bjelis, and G. Montambaux, Phys. Rev. B 53, (1996)1240;
A. Lebed, JETP Lett. 78,138(2003)].Comment: 16 pages, 5 figure
Simulational study of anomalous tracer diffusion in hydrogels
In this article, we analyze different factors that affect the diffusion
behavior of small tracer particles (as they are used e.g.in fluorescence
correlation spectroscopy (FCS)) in the polymer network of a hydrogel and
perform simulations of various simplified models. We observe, that under
certain circumstances the attraction of a tracer particle to the polymer
network strands might cause subdiffusive behavior on intermediate time scales.
In theory, this behavior could be employed to examine the network structure and
swelling behavior of weakly crosslinked hydrogels with the help of FCS.Comment: 11 pages, 11 figure
Re-entrant hidden order at a metamagnetic quantum critical end point
Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T
reveal that the hidden order phase is destroyed before appearing in the form of
a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant
electron metamagnetism at higher temperatures suggests that the re-entrant
phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a
systematic error in the field calibration has been fixed since the original
submission of this manuscrip
Universal mean moment rate profiles of earthquake ruptures
Earthquake phenomenology exhibits a number of power law distributions
including the Gutenberg-Richter frequency-size statistics and the Omori law for
aftershock decay rates. In search for a basic model that renders correct
predictions on long spatio-temporal scales, we discuss results associated with
a heterogeneous fault with long range stress-transfer interactions. To better
understand earthquake dynamics we focus on faults with Gutenberg-Richter like
earthquake statistics and develop two universal scaling functions as a stronger
test of the theory against observations than mere scaling exponents that have
large error bars. Universal shape profiles contain crucial information on the
underlying dynamics in a variety of systems. As in magnetic systems, we find
that our analysis for earthquakes provides a good overall agreement between
theory and observations, but with a potential discrepancy in one particular
universal scaling function for moment-rates. The results reveal interesting
connections between the physics of vastly different systems with avalanche
noise.Comment: 13 pages, 5 figure
User-centred design of flexible hypermedia for a mobile guide: Reflections on the hyperaudio experience
A user-centred design approach involves end-users from the very beginning. Considering users at the early stages compels designers to think in terms of utility and usability and helps develop the system on what is actually needed. This paper discusses the case of HyperAudio, a context-sensitive adaptive and mobile guide to museums developed in the late 90s. User requirements were collected via a survey to understand visitors’ profiles and visit styles in Natural Science museums. The knowledge acquired supported the specification of system requirements, helping defining user model, data structure and adaptive behaviour of the system. User requirements guided the design decisions on what could be implemented by using simple adaptable triggers and what instead needed more sophisticated adaptive techniques, a fundamental choice when all the computation must be done on a PDA. Graphical and interactive environments for developing and testing complex adaptive systems are discussed as a further
step towards an iterative design that considers the user interaction a central point. The paper discusses
how such an environment allows designers and developers to experiment with different system’s behaviours and to widely test it under realistic conditions by simulation of the actual context evolving over time. The understanding gained in HyperAudio is then considered in the perspective of the
developments that followed that first experience: our findings seem still valid despite the passed time
- …