2,664 research outputs found
Factorizing Numbers with the Gauss Sum Technique: NMR Implementations
Several physics-based algorithms for factorizing large number were recently
published. A notable recent one by Schleich et al. uses Gauss sums for
distinguishing between factors and non-factors. We demonstrate two NMR
techniques that evaluate Gauss sums and thus implement their algorithm. The
first one is based on differential excitation of a single spin magnetization by
a cascade of RF pulses. The second method is based on spatial averaging and
selective refocusing of magnetization for Gauss sums corresponding to factors.
All factors of 16637 and 52882363 are successfully obtained.Comment: 4 pages, 4 figures; Abstract and Conclusion are slightly modified.
References added and formatted with Bibte
Trabecular bone structure correlates with hand posture and use in hominoids
Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred behaviour and trabecular structure in extant hominoids that can be informative for reconstructing behaviour in fossil primates
High Velocity Cloud Complex H: A Satellite of the Milky Way in a Retrograde Orbit?
Observations with the Green Bank Telescope of 21cm HI emission from the
high-velocity cloud Complex H suggest that it is interacting with the Milky
Way. A model in which the cloud is a satellite of the Galaxy in an inclined,
retrograde circular orbit reproduces both the cloud's average velocity and its
velocity gradient with latitude. The model places Complex H at approximately 33
kpc from the Galactic Center on a retrograde orbit inclined about 45 degrees to
the Galactic plane. At this location it has an HI mass > 6 10^6 Msun and
dimensions of at least 10 by 5 kpc. Some of the diffuse HI associated with the
cloud has apparently been decelerated by interaction with Galactic gas. Complex
H has similarities to the dwarf irregular galaxy Leo A and to some compact
high-velocity clouds, and has an internal structure nearly identical to parts
of the Magellanic Stream, with a pressure P/k about 100 cm^{-3} K.Comment: 12 pages includes 4 figures. To be published in Astrophysical Journal
Letters, 1 July 200
Требования к узлу сопряжения секций геохода
Проведен анализ работы узла сопряжения секций (УСС) геохода. Сформированы требования к узлу сопряжения секций геохода.The analysis of the operation of the bearing unit of the geokhod is carried out. The requirements for the bearing unit of the geokhod are formed
The Role of Immune Reactivity in Bone Regeneration
Bone is a complex organ with the capacity to regenerate. Even with this healing potential, healing results in fractured bone are unsatisfactory in a considerable patient cohort even with a good treatment regimen. These delayed healing cases encourage further research into possible new treatment approaches. The recently developed field of osteoimmunology addressing the tight interconnectivity of the skeletal system and the immune system could be a promising opportunity in this regard. In this review, the complexity of bone and the bone healing process are highlighted with an emphasis on the early healing phase. Specific immune cell subsets are considered for their potential to enhance bone healing and thus to develop new treatment strategies for patients in need
EXIST\u27S Gamma-Ray Burst Sensitivity
We use semianalytic techniques to evaluate the burst sensitivity of designs for the EXIST hard X-ray survey mis-sion. Applying these techniques to the mission design proposed for the Beyond Einstein program,we find that with its very large field of view and faint gamma-ray burst detection threshold, EXIST will detect and localize approximately two bursts per day, a large fraction of which may be at high redshift. We estimate that EXIST’s maximum sensitivity will be ~4 times greater than that of Swift’s Burst Alert Telescope. Bursts will be localized to better than 40 at thresh-old, with a burst position as good asa few arcsecondsfor strong bursts. EXIST’s combination of three different detector systems will provide spectra from 3 keV to more than 10 MeV. Thus, EXIST will enable a major leap in the understand-ing of bursts, their evolution, environment, and utility as cosmological probes
Educational outcomes in extremely preterm children : neuropsychological correlates and predictors of attainment
This study assessed the impact of extremely preterm birth on academic attainment at 11 years of
age, investigated neuropsychological antecedents of attainment in reading and mathematics, and
examined early predictors of educational outcomes. Children born extremely preterm had significantly
poorer academic attainment and a higher prevalence of learning difficulties than their term
peers. General cognitive ability and specific deficits in visuospatial skills or phoneme deletion at 6
years were predictive of mathematics and reading attainment at 11 years in both extremely preterm
and term children. Phonological processing, attention, and executive functions at 6 years were also
associated with academic attainment in children born extremely preterm. Furthermore, social factors,
neonatal factors (necrotizing enterocolitis, breech delivery, abnormal cerebral ultrasound, early
breast milk provision), and developmental factors at 30 months (head circumference, cognitive development),
were independent predictors of educational outcomes at 11 years. Neonatal complications
combined with assessments of early cognitive function provide moderate prediction for educational
outcomes in children born extremely preterm
Ion stopping in dense plasma target for high energy density physics
The basic physics of nonrelativistic and electromagnetic ion stopping in hot and ionized plasma targets is thoroughly updated. Corresponding projectile-target interactions involve enhanced projectile ionization and coupling with target free electrons leading to significantly larger energy losses in hot targets when contrasted to their cold homologues. Standard stoppping formalism is framed around the most economical extrapolation of high velocity stopping in cold matter. Further elaborations pay attention to target electron coupling and nonlinearities due to enhanced projectile charge state, as well. Scaling rules are then used to optimize the enhanced stopping of MeV/amu ions in plasmas with electron linear densities nel ~ 10 18 -10 20 cm -2 . The synchronous firing of dense and strongly ionized plasmas with the time structure of bunched and energetic multicharged ion beam then allow to probe, for the first time, the long searched enhanced plasma stopping and projectile charge at target exit. Laser ablated plasmas (SPQR1) and dense linear plasma columns (SPQR2) show up as targets of choice in providing accurate and on line measurements of plasma parameters. Corresponding stopping results are of a central significance in asserting the validity of intense ion beam scenarios for driving thermonuclear pellets. Other applications of note feature thorium induced fission, novel ion sources and specific material processing through low energy ion beams. Last but not least, the given ion beam-plasma target interaction physics is likely to pave a way to the production and diagnostics of warm dense matter (WDM)
- …