719 research outputs found
Observations of Dispersion Cancellation of Entangled Photon Pairs
An experimental study of the dispersion cancellation occurring in
frequency-entangled photon pairs is presented. The approach uses time-resolved
up conversion of the pairs, which has temporal resolution at the fs level, and
group-delay dispersion sensitivity of under
experimental conditions. The cancellation is demonstrated with dispersion
stronger than in the signal and idler
modes. The observations represent the generation, compression, and
characterization of ultrashort biphotons with correlation width as small as 6.8
times the degenerate optical period.Comment: 5 pages, 3 figure
Narrowband spectroscopy by all-optical correlation of broadband pulses
High peak power ultrafast lasers are widely used in nonlinear spectroscopy
but often limit its spectral resolution because of the broad frequency
bandwidth of ultrashort laser pulses. Improving the resolution by achieving
spectrally narrow excitation of, or emission from, the resonant medium by means
of multi-photon interferences has been the focus of many recent developments in
ultrafast spectroscopy. We demonstrate an alternative approach, in which high
resolution is exercised by detecting narrow spectral correlations between
broadband excitation and emission optical fields. All-optical correlation
analysis, easily incorporated into the traditional spectroscopic setup, enables
direct, robust and simultaneous detection of multiple narrow resonances with a
single femtosecond pulse.Comment: 5 pages, 4 figures, submitted to PR
Dispersive Elements for Enhanced Laser Gyroscopy and Cavity Stabilization
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. We find an enhancement in the sensitivity of a laser gyroscope to rotation for normal dispersion, while anomalous dispersion can be used to self-stabilize an optical cavity. Our results indicate that atomic media, even coherent superpositions in multilevel atoms, are of limited use for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice-versa. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together. We find that for over-coupled resonators, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Under-coupled resonators can be used to stabilize the frequency of a laser cavity, but result in a concomitant increase in amplitude fluctuations. As a more ideal solution we propose the use of a variety of coupled-resonator-induced transparency that is accompanied by anomalous dispersion
Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films
We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer
Determinants of adoption and intensity of use of balanced nutrient management systems technologies in the northern Guinea savanna of Nigeria
As part of a major effort to address soil fertility decline in West Africa, a project on Balanced Nutrient Management Systems (BNMS) has since 2000 been implemented in the northern Guinea savanna (NGS) of Nigeria. The project has tested and promoted two major technology packages, including a combined application of inorganic fertilizer and manure (BNMS-manure) and a soybean/maize rotation practice referred to as BNMS-rotation. This study employed Tobit model to examine factors that influence the adoption and intensity of utilization of BNMS technologies in the NGS of Nigeria. Results showed that less than 10% of the sample households adopted at least one of the two components of the technology package by the end of 2002. However, by 2005 the adoption of BNMS-rotation had reached 40% while that of BNMS-manure had reached 48%. A number of factors such as access to credit, farmers’ perception of the state of land degradation, and assets ownership were found to be significant in determining farmers’ adoption decisions on BNMS-manure while off-farm income was found to be significant in determining farmers’ adoption decisions on BNMS-rotation. Extension services and farmer-to-farmer technology diffusion channels were the major means of transfer of BNMS technologies.Adoption, BNMS-manure, BNMS-rotation, Northern Guinea Savanna (NGS)., Agricultural and Food Policy, Community/Rural/Urban Development, Crop Production/Industries, Environmental Economics and Policy, Farm Management, Food Consumption/Nutrition/Food Safety, Food Security and Poverty, Health Economics and Policy, Institutional and Behavioral Economics, International Relations/Trade, Livestock Production/Industries, Productivity Analysis, Research and Development/Tech Change/Emerging Technologies, Research Methods/ Statistical Methods,
Effect of light polarization on plasma distribution and filament formation
We show that, for 200 fs light pulses at 790 nm, the formation of filaments
is strongly affected by the laser light polarization . Filamentation does not
exist for a pure circularly polarized light, propagating in vacuum before
focusing in air, while there is no difference for focusing the light in air or
vacuum for linearly polarized light.Comment: 4pages 2 figure
A simple method for the determination of the structure of ultrashort relativistic electron bunches
In this paper we propose a new method for measurements of the longitudinal
profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers
(XFELs). The method is simply the combination of two well-known techniques,
which where not previously combined to our knowledge. We use seed 10-ps 1047 nm
quantum laser to produce exact optical replica of ultrafast electron bunches.
The replica is generated in apparatus which consists of an input undulator
(energy modulator), and the short output undulator (radiator) separated by a
dispersion section. The radiation in the output undulator is excited by the
electron bunch modulated at the optical wavelength and rapidly reaches 100
MW-level peak power. We then use the now-standard method of ultrashort laser
pulse-shape measurement, a tandem combination of autocorrelator and spectrum
(FROG -- frequency resolved optical gating). The FROG trace of the optical
replica of electron bunch gives accurate and rapid electron bunch shape
measurements in a way similar to a femtosecond oscilloscope. Real-time
single-shot measurements of the electron bunch structure could provide
significant information about physical mechanisms responsible for generation
ultrashort electron bunches in bunch compressors. The big advantage of proposed
technique is that it can be used to determine the slice energy spread and
emittance in multishot measurements. It is possible to measure bunch structure
completely, that is to measure peak current, energy spread and transverse
emittance as a function of time. We illustrate with numerical examples the
potential of the proposed method for electron beam diagnostics at the European
X-ray FEL.Comment: 41 pages, 18 figure
Phase shifts in nonresonant coherent excitation
Far-off-resonant pulsed laser fields produce negligible excitation between
two atomic states but may induce considerable phase shifts. The acquired phases
are usually calculated by using the adiabatic-elimination approximation. We
analyze the accuracy of this approximation and derive the conditions for its
applicability to the calculation of the phases. We account for various sources
of imperfections, ranging from higher terms in the adiabatic-elimination
expansion and irreversible population loss to couplings to additional states.
We find that, as far as the phase shifts are concerned, the adiabatic
elimination is accurate only for a very large detuning. We show that the
adiabatic approximation is a far more accurate method for evaluating the phase
shifts, with a vast domain of validity; the accuracy is further enhanced by
superadiabatic corrections, which reduce the error well below .
Moreover, owing to the effect of adiabatic population return, the adiabatic and
superadiabatic approximations allow one to calculate the phase shifts even for
a moderately large detuning, and even when the peak Rabi frequency is larger
than the detuning; in these regimes the adiabatic elimination is completely
inapplicable. We also derive several exact expressions for the phases using
exactly soluble two-state and three-state analytical models.Comment: 10 pages, 7 figure
Dispersion-Enhanced Laser Gyroscope
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sensitivities. The element is treated as both a phase and amplitude filter, and the time-dependence of the cavity field is considered. Both atomic gases (two-level and multi-level) and optical resonators (single and coupled) are considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has greater loss at the carrier frequency than at the side-band frequencies, i.e., an element that simultaneously pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled optical resonator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at a group index of zero. However, the number of round trips required to reach a steady-state also becomes infinite when the group index is zero (or two). For even larger dispersions a steady-state cannot be achieved, and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response
Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in sub-ablation conditions
An investigation of ultrashort pulsed laser induced surface modification due
to conditions that result in a superheated melted liquid layer and material
evaporation are considered. To describe the surface modification occurring
after cooling and resolidification of the melted layer and understand the
underlying physical fundamental mechanisms, a unified model is presented to
account for crater and subwavelength ripple formation based on a synergy of
electron excitation and capillary waves solidification. The proposed
theoretical framework aims to address the laser-material interaction in
sub-ablation conditions and thus minimal mass removal in combination with a
hydrodynamics-based scenario of the crater creation and ripple formation
following surface irradiation with single and multiple pulses, respectively.
The development of the periodic structures is attributed to the interference of
the incident wave with a surface plasmon wave. Details of the surface
morphology attained are elaborated as a function of the imposed conditions and
results are tested against experimental data
- …