233 research outputs found
Integration of molecular characterization of microorganisms in a global antimicrobial resistance surveillance program
© 2001 by the Infectious Diseases Society of America. All rights reserved.The SENTRY Antimicrobial Surveillance Program has incorporated molecular strain typing and resistance genotyping as a means of providing additional information that may be useful for understanding pathogenic microorganisms worldwide. Resistance phenotypes of interest include multidrug-resistant pathogens, extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci, and fluoroquinolone-resistant (FQR) strains of gram-negative bacilli and Streptococcus pneumoniae. Clusters of 2 isolates within a given resistance profile that are linked temporally and by hospital location are flagged for DNA fingerprinting. Further characterization of organisms with respect to resistance genotype is accomplished with use of polymerase chain reaction and DNA sequencing. This process has been highly successful in identifying clonal spread within clusters of multiresistant pathogens. Between 50% and 90% of MRSA clusters identified by phenotypic screening contained evidence of clonal spread. Among the Enterobacteriaceae, ESBL-producing strains of Escherichia coli and Klebsiella pneumoniae are the most common pathogens causing clusters of infection, and 50% of recognized clusters demonstrate clonal spread. Clusters of Pseudomonas aeruginosa, Acinetobacter species, and Stenotrophomonas maltophilia have been noted with clonal spread among patients with urinary tract, respiratory, and bloodstream infections. Characterization of mutations in the FQR-determining region of phenotypically susceptible isolates of E. coli and S. pneumoniae has identified first-stage mutants among as many as 40% of isolates. The ability to characterize organisms phenotypically and genotypically is extremely powerful and provides unique information that is important in a global antimicrobial surveillance program.M. A. Pfaller, J. Acar, R. N. Jones, J. Verhoef, J. Turnidge, and H. S. Sade
Patterns of antimicrobial resistance in a surgical intensive care unit of a university hospital in Turkey
BACKGROUND: Several studies have reported higher rates of antimicrobial resistance among isolates from intensive care units than among isolates from general patient-care areas. The aims of this study were to review the pathogens associated with nosocomial infections in a surgical intensive care unit of a university hospital in Turkey and to summarize rates of antimicrobial resistance in the most common pathogens. The survey was conducted over a period of twelve months in a tertiary-care teaching hospital located in the south-eastern part of Turkey, Gaziantep. A total of 871 clinical specimens from 615 adult patients were collected. From 871 clinical specimens 771 bacterial and fungal isolates were identified. RESULTS: Most commonly isolated microorganisms were: Pseudomonas aeruginosa (20.3%), Candida species (15%) and Staphylococcus aureus (12.9%). Among the Gram-negative microorganisms P. aeruginosa were mostly resistant to third-generation cephalosporins (71.3–98.1%), while Acinetobacter baumannii were resistant in all cases to piperacillin, ceftazidime and ceftriaxone. Isolates of S. aureus were mostly resistant to penicillin, ampicillin, and methicillin (82–95%), whereas coagulase-negative staphylococci were 98.6% resistant to methicillin and in all cases resistant to ampicillin and tetracycline. CONCLUSION: In order to reduce the emergence and spread of antimicrobial-resistant pathogens in ICUs, monitoring and optimization of antimicrobial use in hospitals are strictly recommended. Therefore local resistance surveillance programs are of most value in developing appropriate therapeutic guidelines for specific infections and patient types
Antibiotic control of antibiotic resistance in hospitals: a simulation study
<p>Abstract</p> <p>Background</p> <p>Using mathematical deterministic models of the epidemiology of hospital-acquired infections and antibiotic resistance, it has been shown that the rates of hospital-acquired bacterial infection and frequency of antibiotic infections can be reduced by (i) restricting the admission of patients colonized with resistant bacteria, (ii) increasing the rate of turnover of patients, (iii) reducing transmission by infection control measures, and (iv) the use of second-line drugs for which there is no resistance. In an effort to explore the generality and robustness of the predictions of these deterministic models to the real world of hospitals, where there is variation in all of the factors contributing to the incidence of infection, we developed and used a stochastic model of the epidemiology of hospital-acquired infections and resistance. In our analysis of the properties of this model we give particular consideration different regimes of using second-line drugs in this process.</p> <p>Methods</p> <p>We developed a simple model that describes the transmission of drug-sensitive and drug-resistant bacteria in a small hospital. Colonized patients may be treated with a standard drug, for which there is some resistance, and with a second-line drug, for which there is no resistance. We then ran deterministic and stochastic simulation programs, based on this model, to predict the effectiveness of various treatment strategies.</p> <p>Results</p> <p>The results of the analysis using our stochastic model support the predictions of the deterministic models; not only will the implementation of any of the above listed measures substantially reduce the incidences of hospital-acquired infections and the frequency of resistance, the effects of their implementation should be seen in months rather than the years or decades anticipated to control resistance in open communities. How effectively and how rapidly the application of second-line drugs will contribute to the decline in the frequency of resistance to the first-line drugs depends on how these drugs are administered. The earlier the switch to second-line drugs, the more effective this protocol will be. Switching to second-line drugs at random is more effective than switching after a defined period or only after there is direct evidence that the patient is colonized with bacteria resistant to the first antibiotic.</p> <p>Conclusions</p> <p>The incidence of hospital-acquired bacterial infections and frequencies of antibiotic resistant bacteria can be markedly and rapidly reduced by different readily implemented procedures. The efficacy using second line drugs to achieve these ends depends on the protocol used for their administration.</p
Evaluation of single and double-locus real-time PCR assays for methicillin-resistant Staphylococcus aureus (MRSA) surveillance
<p>Abstract</p> <p>Background</p> <p>Methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) is a human pathogen, representing an infection control challenge. Conventional MRSA screening takes up to three days, therefore development of rapid detection is essential. Real time-PCR (rt-PCR) is the fastest method fulfilling this task. All currently published or commercially available rt-PCR MRSA assays relay on single or double-locus detection. Double-locus assays are based on simultaneous detection of <it>mecA </it>gene and a <it>S. aureus</it>-specific gene. Such assays cannot be applied on clinical samples, which often contain both coagulase-negative staphylococci (CoNS) and <it>S. aureus</it>, either of which can carry <it>mecA</it>. Single-locus assays are based on detection of the staphylococcal cassette chromosome <it>mec </it>(SCC<it>mec</it>) element and the <it>S. aureus</it>-specific <it>orfX </it>gene, assuming that it is equivalent to <it>mecA </it>detection.</p> <p>Findings</p> <p>Parallel evaluation of several published single and double-locus rt-PCR MRSA assays of 150 pure culture strains, followed by analysis of 460 swab-derived clinical samples which included standard identification, susceptibility testing, followed by PCR detection of staphylococcal suspected isolates and in-PCR mixed bacterial populations analysis indicated the following findings.</p> <p>Pure cultures analysis indicated that one of the single-locus assay had very high prevalence of false positives (Positive predictive value = 77.8%) and was excluded from further analysis. Analysis of 460 swab-derived samples indicated that the second single-locus assay misidentified 16 out of 219 MRSA's and 13 out of 90 methicillin-sensitive <it>S</it>. <it>aureus</it>'s (MSSA) were misidentified as MRSA's. The double-locus detection assay misidentified 55 out of 90 MSSA's. 46 MSSA containing samples were misidentified as MRSA and 9 as other than <it>S. aureus </it>ending with low positive predicted value (<85%) and very low specificity (<62%).</p> <p>Conclusion</p> <p>The results indicate that high prevalence of false-positive and false-negative reactions occurs in such assays.</p
Secular trends of antimicrobial resistance of blood isolates in a newly founded Greek hospital
BACKGROUND: Antimicrobial resistance is one of the most challenging issues in modern medicine. METHODS: We evaluated the secular trends of the relative frequency of blood isolates and of the pattern of their in vitro antimicrobial susceptibility in our hospital during the last four and a half years. RESULTS: Overall, the data regarding the relative frequency of blood isolates in our newly founded hospital do not differ significantly from those of hospitals that are functioning for a much longer period of time. A noteworthy emerging problem is the increasing antimicrobial resistance of Gram-negative bacteria, mainly Acinetobacter baumannii and Klebsiella pneumoniae to various classes of antibiotics. Acinetobacter baumannii isolates showed an increase of resistance to amikacin (p = 0.019), ciprofloxacin (p = 0.001), imipenem (p < 0.001), and piperacillin/tazobactam (p = 0.01) between the first and second period of the study. CONCLUSION: An alarming increase of the antimicrobial resistance of Acinetobacter baumannii isolates has been noted during our study
Epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Sweden 2000–2003, increasing incidence and regional differences
BACKGROUND: The occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has gradually become more frequent in most countries of the world. Sweden has remained one of few exceptions to the high occurrence of MRSA in many other countries. During the late 1990s, Sweden experienced a large health-care associated outbreak which with resolute efforts was overcome. Subsequently, MRSA was made a notifiable diagnosis in Sweden in 2000. METHODS: From the start of being a notifiable disease in January 2000, the Swedish Institute for Infectious Disease Control (SMI) initiated an active surveillance of MRSA. RESULTS: The number of reported MRSA-cases in Sweden increased from 325 cases in 2000 to 544 in 2003, corresponding to an overall increase in incidence from 3.7 to 6.1 per 100000 inhabitants. Twenty five per cent of the cases were infected abroad. The domestic cases were predominantly found through cultures taken on clinical indication and the cases infected abroad through screening. There were considerable regional differences in MRSA-incidence and age-distribution of cases. CONCLUSION: The MRSA incidence in Sweden increased over the years 2000–2003. Sweden now poises on the rim of the same development that was seen in the United Kingdom some ten years ago. A quarter of the cases were infected abroad, reflecting that international transmission is now increasingly important in a low-endemic setting. To remain in this favourable situation, stepped up measures will be needed, to identify imported cases, to control domestic outbreaks and to prevent transmission within the health-care sector
Antifungal susceptibility of invasive yeast isolates in Italy: the GISIA3 study in critically ill patients
<p>Abstract</p> <p>Background</p> <p>Yeasts are a common cause of invasive fungal infections in critically ill patients. Antifungal susceptibility testing results of clinically significant fungal strains are of interest to physicians, enabling them to adopt appropriate strategies for empiric and prophylactic therapies. We investigated the antifungal susceptibility of yeasts isolated over a 2-year period from hospitalised patients with invasive yeast infections.</p> <p>Methods</p> <p>638 yeasts were isolated from the blood, central venous catheters and sterile fluids of 578 patients on general and surgical intensive care units and surgical wards. Etest strips and Sensititre panels were used to test the susceptibility of the isolates to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole in 13 laboratories centres (LC) and two co-ordinating centres (CC). The Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution method was used at the CCs for comparison.</p> <p>Results</p> <p>Etest and Sensititre (LC/CC) MIC<sub>90 </sub>values were, respectively: amphotericin B 0.5/0.38, 1/1 mg/L; anidulafungin 2/1.5 and 1/1 mg/L; caspofungin 1/0.75 and 0.5/0.5 mg/L; fluconazole 12/8 and 16/16 mg/L; itraconazole 1/1.5, 0.5/0.5 mg/L; posaconazole 0.5 mg/L and voriconazole 0.25 mg/L for all. The overall MIC<sub>90 </sub>values were influenced by the reduced susceptibility of <it>Candida parapsilosis </it>isolates to echinocandins and a reduced or lack of susceptibility of <it>Candida glabrata </it>and <it>Candida krusei </it>to azoles, in particular fluconazole and itraconazole. Comparison of the LC and CC results showed good Essential Agreement (90.3% for Etest and 92.9% for Sensititre), and even higher Categorical Agreement (93.9% for Etest and 96% for Sensititre); differences were observed according to the species, method, and antifungal drug. No cross-resistance between echinocandins and triazoles was detected.</p> <p>Conclusions</p> <p>Our data confirm the different antifungal susceptibility patterns among species, and highlight the need to perform antifungal susceptibility testing of clinically relevant yeasts. With the exception of a few species (e.g. <it>C. glabrata </it>for azoles and <it>C. parapsilosis </it>for echinocandins), the findings of our study suggest that two of the most widely used commercial methods (Etest and Sensititre) provide valid and reproducible results.</p
The distinct category of healthcare associated bloodstream infections
<p>Abstract</p> <p>Background</p> <p>Bloodstream infections (BSI) have been traditionally classified as either community acquired (CA) or hospital acquired (HA) in origin. However, a third category of healthcare-associated (HCA) community onset disease has been increasingly recognized. The objective of this study was to compare and contrast characteristics of HCA-BSI with CA-BSI and HA-BSI.</p> <p>Methods</p> <p>All first episodes of BSI occurring among adults admitted to hospitals in a large health region in Canada during 2000-2007 were identified from regional databases. Cases were classified using a series of validated algorithms into one of HA-BSI, HCA-BSI, or CA-BSI and compared on a number of epidemiologic, microbiologic, and outcome characteristics.</p> <p>Results</p> <p>A total of 7,712 patients were included; 2,132 (28%) had HA-BSI, 2,492 (32%) HCA-BSI, and 3,088 (40%) had CA-BSI. Patients with CA-BSI were significantly younger and less likely to have co-morbid medical illnesses than patients with HCA-BSI or HA-BSI (p < 0.001). The proportion of cases in males was higher for HA-BSI (60%; p < 0.001 vs. others) as compared to HCA-BSI or CA-BSI (52% and 54%; p = 0.13). The proportion of cases that had a poly-microbial etiology was significantly lower for CA-BSI (5.5%; p < 0.001) compared to both HA and HCA (8.6 vs. 8.3%). The median length of stay following BSI diagnosis 15 days for HA, 9 days for HCA, and 8 days for CA (p < 0.001). Overall the most common species causing bloodstream infection were <it>Escherichia coli, Staphylococcus aureus</it>, and <it>Streptococcus pneumoniae</it>. The distribution and relative rank of importance of these species varied according to classification of acquisition. Twenty eight day all cause case-fatality rates were 26%, 19%, and 10% for HA-BSI, HCA-BSI, and CA-BSI, respectively (p < 0.001).</p> <p>Conclusion</p> <p>Healthcare-associated community onset infections are distinctly different from CA and HA infections based on a number of epidemiologic, microbiologic, and outcome characteristics. This study adds further support for the classification of community onset BSI into separate CA and HCA categories.</p
Diversity of SCCmec Elements in Methicillin-Resistant Coagulase-Negative Staphylococci Clinical Isolates
in MR-CoNS can generate useful information on the mobilization and evolution of this element.). in MR-CoNS
- …